236 lines
7.6 KiB
C++
236 lines
7.6 KiB
C++
/*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* Copyright 2011-2019 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cast.hpp"
|
|
#include "debug/assert.hpp"
|
|
#include "parallel/stack.hpp"
|
|
#include "view.hpp"
|
|
|
|
#include <atomic>
|
|
#include <new>
|
|
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
|
|
namespace cruft {
|
|
/// A simple, thread safe, pre-allocated pool allocator.
|
|
template <typename T>
|
|
class pool {
|
|
private:
|
|
/// A collection of all unallocated slots.
|
|
parallel::stack<void*> m_available;
|
|
|
|
/// A pointer to the start of the allocated region.
|
|
void *m_store;
|
|
|
|
/// The total number of items for which storage has been allocated.
|
|
std::size_t m_capacity;
|
|
|
|
// We used to use std::aligned_storage_t and arrays/vectors proper for
|
|
// data storage. But this requires that the user has already defined
|
|
// ValueT ahead of time (given we need to call sizeof outside a deduced
|
|
// context).
|
|
//
|
|
// We tried a strategy where nodes were a union of ValueT and a
|
|
// linked-list. However this proved heinously expensive to traverse to
|
|
// find allocated objects that need to be destroyed when our destructor
|
|
// is called.
|
|
|
|
public:
|
|
///////////////////////////////////////////////////////////////////////
|
|
pool (const pool&) = delete;
|
|
pool& operator= (const pool&) = delete;
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
pool (pool &&rhs) noexcept
|
|
: m_available (0)
|
|
, m_capacity (0)
|
|
{
|
|
std::swap (m_available, rhs.m_available);
|
|
std::swap (m_store, rhs.m_store);
|
|
std::swap (m_capacity, rhs.m_capacity);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
pool& operator= (pool&&);
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
explicit
|
|
pool (std::size_t _capacity)
|
|
: m_available (_capacity)
|
|
, m_store (::operator new[] (_capacity * sizeof (T), std::align_val_t {alignof (T)}))
|
|
, m_capacity (_capacity)
|
|
{
|
|
if (!m_store)
|
|
throw std::bad_alloc ();
|
|
|
|
T* elements = reinterpret_cast<T*> (m_store);
|
|
for (size_t i = 0; i < m_capacity; ++i)
|
|
m_available.push (elements + i);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
~pool ()
|
|
{
|
|
clear ();
|
|
|
|
::operator delete[] (
|
|
m_store,
|
|
m_capacity * sizeof (T),
|
|
std::align_val_t {alignof (T)}
|
|
);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
[[nodiscard]] T*
|
|
allocate [[gnu::malloc]] [[gnu::returns_nonnull]] (void)
|
|
{
|
|
void *raw;
|
|
if (!m_available.pop (&raw))
|
|
throw std::bad_alloc ();
|
|
return reinterpret_cast<T*> (raw);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
deallocate (T *cooked)
|
|
{
|
|
void *raw = reinterpret_cast<void*> (cooked);
|
|
if (unlikely (!m_available.push (raw)))
|
|
panic (__FUNCTION__);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
template <typename ...Args>
|
|
T*
|
|
construct (Args &&...args)
|
|
{
|
|
auto ptr = allocate ();
|
|
try {
|
|
return new (ptr) T (std::forward<Args> (args)...);
|
|
} catch (...) {
|
|
deallocate (ptr);
|
|
throw;
|
|
}
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
void
|
|
destroy (T *ptr)
|
|
{
|
|
ptr->~T ();
|
|
deallocate (ptr);
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
void destroy (size_t idx)
|
|
{
|
|
return destroy (&(*this)[idx]);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
auto capacity (void) const { return m_capacity; }
|
|
auto size (void) const { return capacity () - m_available.size (); }
|
|
bool empty (void) const { return size () == 0; }
|
|
bool full (void) const { return size () == capacity (); }
|
|
|
|
|
|
/// Destroys all objects that have been allocated, frees the
|
|
/// associated memory, and then rebuilds the free node list ready for
|
|
/// allocations again.
|
|
///
|
|
/// NOTE: All bets are off if any object throws an exception out of
|
|
/// their destructor. We provide no exception guarantees.
|
|
///
|
|
/// This call is NOT thread safe. No users should be accessing this
|
|
/// object for the duration of this call.
|
|
void clear (void)
|
|
{
|
|
auto const valid_queue = m_available.store (
|
|
decltype(m_available)::contract::I_HAVE_LOCKED_THIS_STRUCTURE
|
|
);
|
|
std::sort (valid_queue.begin (), valid_queue.end ());
|
|
|
|
// Now that we've ordered the nodes we can walk the list from
|
|
// start to finish and find nodes that aren't in the free list.
|
|
// Call the destructors on the data contained in these.
|
|
auto node_cursor = valid_queue.begin ();
|
|
auto data_cursor = reinterpret_cast<T*> (m_store);
|
|
auto const data_end = data_cursor + m_capacity;
|
|
|
|
while (node_cursor != valid_queue.end ()) {
|
|
while (&*data_cursor < *node_cursor) {
|
|
reinterpret_cast<T*> (&*data_cursor)->~T ();
|
|
++data_cursor;
|
|
}
|
|
|
|
++node_cursor;
|
|
++data_cursor;
|
|
}
|
|
|
|
while (data_cursor != data_end) {
|
|
reinterpret_cast<T*> (&*data_cursor)->~T ();
|
|
++data_cursor;
|
|
}
|
|
|
|
m_available.clear ();
|
|
T* elements = reinterpret_cast<T*> (m_store);
|
|
for (size_t i = 0; i < m_capacity; ++i)
|
|
m_available.push (elements + i);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
size_t index (T const *ptr) const
|
|
{
|
|
return ptr - reinterpret_cast<T*> (m_store);
|
|
}
|
|
|
|
|
|
/// returns the base address of the allocation.
|
|
///
|
|
/// guaranteed to point to the first _possible_ allocated value;
|
|
/// however it may not be _live_ at any given moment.
|
|
///
|
|
/// DO NOT use this pointer for indexing as you _may_ be unable to
|
|
/// account for internal node sizes, alignment, or padding. This is
|
|
/// why the return type is void.
|
|
///
|
|
/// We may be using one particular representation at the moment but
|
|
/// stability is not guaranteed at this point.
|
|
void * base (void) & { return m_store; }
|
|
void const* base (void) const& { return m_store; }
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
T& operator[] (size_t idx) &
|
|
{
|
|
return reinterpret_cast<T*> (m_store) [idx];
|
|
}
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
T const& operator[] (size_t idx) const&
|
|
{
|
|
return reinterpret_cast<T*> (m_store) [idx];
|
|
}
|
|
};
|
|
}
|