pool: use voidptr storage to avoid definition requirements for users
This commit is contained in:
parent
19409d67ca
commit
fb36953135
231
pool.hpp
231
pool.hpp
@ -8,8 +8,10 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "debug/assert.hpp"
|
||||
#include "cast.hpp"
|
||||
#include "debug/assert.hpp"
|
||||
#include "parallel/stack.hpp"
|
||||
#include "view.hpp"
|
||||
|
||||
#include <atomic>
|
||||
#include <new>
|
||||
@ -18,116 +20,101 @@
|
||||
#include <cstdint>
|
||||
|
||||
namespace cruft {
|
||||
/// a simple pre-allocated pool for storage of PODs.
|
||||
///
|
||||
/// non-POD types can be stored, but there are no guarantees for calling
|
||||
/// item destructors at pool destruction time.
|
||||
/// A simple, thread safe, pre-allocated pool allocator.
|
||||
template <typename T>
|
||||
class pool {
|
||||
protected:
|
||||
union node;
|
||||
private:
|
||||
/// A collection of all unallocated slots.
|
||||
parallel::stack<void*> m_available;
|
||||
|
||||
union node {
|
||||
alignas(node*) std::atomic<node*> next;
|
||||
alignas(node*) node* raw;
|
||||
alignas(T) char data[sizeof(T)];
|
||||
};
|
||||
/// A pointer to the start of the allocated region.
|
||||
void *m_store;
|
||||
|
||||
static_assert (std::atomic<node*>::is_always_lock_free);
|
||||
|
||||
// root address of allocation. used in deletion at destruction time.
|
||||
node* m_head;
|
||||
|
||||
// the next available entry in the linked list
|
||||
std::atomic<node *> m_next;
|
||||
|
||||
// the total number of items that could be stored
|
||||
/// The total number of items for which storage has been allocated.
|
||||
std::size_t m_capacity;
|
||||
|
||||
// the number of items currently stored.
|
||||
std::atomic<size_t> m_size;
|
||||
// We used to use std::aligned_storage_t and arrays/vectors proper for
|
||||
// data storage. But this requires that the user has already defined
|
||||
// ValueT ahead of time (given we need to call sizeof outside a deduced
|
||||
// context).
|
||||
//
|
||||
// We tried a strategy where nodes were a union of ValueT and a
|
||||
// linked-list. However this proved heinously expensive to traverse to
|
||||
// find allocated objects that need to be destroyed when our destructor
|
||||
// is called.
|
||||
|
||||
public:
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
pool (const pool&) = delete;
|
||||
pool& operator= (const pool&) = delete;
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
pool (pool &&rhs) noexcept
|
||||
: m_head (nullptr)
|
||||
, m_next (nullptr)
|
||||
: m_available (0)
|
||||
, m_capacity (0)
|
||||
, m_size (0)
|
||||
{
|
||||
std::swap (m_head, rhs.m_head);
|
||||
|
||||
m_next = rhs.m_next.load ();
|
||||
rhs.m_next = nullptr;
|
||||
|
||||
std::swap (m_capacity, rhs.m_capacity);
|
||||
|
||||
m_size = rhs.m_size.load ();
|
||||
rhs.m_size = 0;
|
||||
std::swap (m_available, rhs.m_available);
|
||||
std::swap (m_store, rhs.m_store);
|
||||
std::swap (m_capacity, rhs.m_capacity);
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
pool& operator= (pool&&);
|
||||
|
||||
explicit
|
||||
pool (std::size_t _capacity):
|
||||
m_capacity (_capacity),
|
||||
m_size (0u)
|
||||
{
|
||||
// allocate the memory and note the base address for deletion in destructor
|
||||
m_next = m_head = new node[m_capacity];
|
||||
|
||||
relink ();
|
||||
//---------------------------------------------------------------------
|
||||
explicit
|
||||
pool (std::size_t _capacity)
|
||||
: m_available (_capacity)
|
||||
, m_store (::operator new[] (_capacity * sizeof (T), std::align_val_t {alignof (T)}))
|
||||
, m_capacity (_capacity)
|
||||
{
|
||||
if (!m_store)
|
||||
throw std::bad_alloc ();
|
||||
|
||||
T* elements = reinterpret_cast<T*> (m_store);
|
||||
for (size_t i = 0; i < m_capacity; ++i)
|
||||
m_available.push (elements + i);
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
~pool ()
|
||||
{
|
||||
clear ();
|
||||
|
||||
// don't check if everything's been returned as pools are often used
|
||||
// for PODs which don't need to be destructed via calling release.
|
||||
delete [] m_head;
|
||||
::operator delete[] (
|
||||
m_store,
|
||||
m_capacity * sizeof (T),
|
||||
std::align_val_t {alignof (T)}
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// Data management
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
[[nodiscard]] T*
|
||||
allocate [[gnu::malloc]] [[gnu::returns_nonnull]] (void)
|
||||
{
|
||||
// double check we have enough capacity left
|
||||
if (!m_next)
|
||||
void *raw;
|
||||
if (!m_available.pop (&raw))
|
||||
throw std::bad_alloc ();
|
||||
CHECK_LT (m_size, m_capacity);
|
||||
|
||||
// unlink the current cursor
|
||||
do {
|
||||
node* curr = m_next;
|
||||
node* soon = curr->next;
|
||||
|
||||
if (m_next.compare_exchange_weak (curr, soon)) {
|
||||
++m_size;
|
||||
return std::launder (cruft::cast::alignment<T*> (curr));
|
||||
}
|
||||
} while (1);
|
||||
return reinterpret_cast<T*> (raw);
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
void
|
||||
deallocate (T *base)
|
||||
deallocate (T *cooked)
|
||||
{
|
||||
auto soon = cruft::cast::alignment<node*> (base);
|
||||
|
||||
do {
|
||||
node *curr = m_next;
|
||||
soon->next = curr;
|
||||
if (m_next.compare_exchange_weak (curr, soon)) {
|
||||
--m_size;
|
||||
return;
|
||||
}
|
||||
} while (1);
|
||||
void *raw = reinterpret_cast<void*> (cooked);
|
||||
if (unlikely (!m_available.push (raw)))
|
||||
panic (__FUNCTION__);
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
template <typename ...Args>
|
||||
T*
|
||||
construct (Args &&...args)
|
||||
@ -142,6 +129,7 @@ namespace cruft {
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
void
|
||||
destroy (T *ptr)
|
||||
{
|
||||
@ -150,14 +138,16 @@ namespace cruft {
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
void destroy (size_t idx)
|
||||
{
|
||||
return destroy (&(*this)[idx]);
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
auto capacity (void) const { return m_capacity; }
|
||||
auto size (void) const { return m_size.load (); }
|
||||
auto size (void) const { return capacity () - m_available.size (); }
|
||||
bool empty (void) const { return size () == 0; }
|
||||
bool full (void) const { return size () == capacity (); }
|
||||
|
||||
@ -173,80 +163,44 @@ namespace cruft {
|
||||
/// object for the duration of this call.
|
||||
void clear (void)
|
||||
{
|
||||
// Create a fake root so that we can always point to the parent
|
||||
// of every node in the system. Hopefully this isn't too large for
|
||||
// the stack.
|
||||
node container;
|
||||
container.next.store (m_next.load ());
|
||||
|
||||
// Sort the node list. We walk the list, and at each step reparent
|
||||
// the child at the lowest memory address to the cursor.
|
||||
for (node* start = container.raw; start; start = start->raw) {
|
||||
node* parent = start;
|
||||
|
||||
// Find the node whose child is the lowest pointer
|
||||
int count = 0;
|
||||
for (auto cursor = parent; cursor->raw; cursor = cursor->raw) {
|
||||
++count;
|
||||
CHECK_NEQ (cursor->raw, start);
|
||||
if (cursor->raw < parent)
|
||||
parent = cursor;
|
||||
}
|
||||
|
||||
// Parent the lowest child to the start of the sorted list
|
||||
auto tmp = start->raw;
|
||||
start->raw = parent->raw;
|
||||
|
||||
// Remove the lowest child from their old parent
|
||||
auto parent_next = parent->raw;
|
||||
parent->raw = parent_next ? parent_next->raw : nullptr;
|
||||
|
||||
// Parent the old successor of the start to the lowest child
|
||||
start->raw = tmp;
|
||||
}
|
||||
auto const valid_queue = m_available.store (
|
||||
decltype(m_available)::contract::I_HAVE_LOCKED_THIS_STRUCTURE
|
||||
);
|
||||
std::sort (valid_queue.begin (), valid_queue.end ());
|
||||
|
||||
// Now that we've ordered the nodes we can walk the list from
|
||||
// start to finish and find nodes that aren't in the free list.
|
||||
// Call the destructors on the data contained in these.
|
||||
auto node_cursor = m_next.load (std::memory_order_relaxed);
|
||||
auto data_cursor = m_head;
|
||||
auto node_cursor = valid_queue.begin ();
|
||||
auto data_cursor = reinterpret_cast<T*> (m_store);
|
||||
auto const data_end = data_cursor + m_capacity;
|
||||
|
||||
while (node_cursor) {
|
||||
while (data_cursor < node_cursor) {
|
||||
cruft::cast::alignment<T*> (data_cursor->data)->~T ();
|
||||
while (node_cursor != valid_queue.end ()) {
|
||||
while (&*data_cursor < *node_cursor) {
|
||||
reinterpret_cast<T*> (&*data_cursor)->~T ();
|
||||
++data_cursor;
|
||||
}
|
||||
|
||||
node_cursor = node_cursor->raw;
|
||||
++node_cursor;
|
||||
++data_cursor;
|
||||
}
|
||||
|
||||
while (data_cursor < m_head + m_capacity) {
|
||||
cruft::cast::alignment<T*> (data_cursor->data)->~T ();
|
||||
while (data_cursor != data_end) {
|
||||
reinterpret_cast<T*> (&*data_cursor)->~T ();
|
||||
++data_cursor;
|
||||
}
|
||||
|
||||
relink ();
|
||||
m_available.clear ();
|
||||
T* elements = reinterpret_cast<T*> (m_store);
|
||||
for (size_t i = 0; i < m_capacity; ++i)
|
||||
m_available.push (elements + i);
|
||||
}
|
||||
|
||||
private:
|
||||
void relink (void)
|
||||
{
|
||||
// Reset the allocation cursor to point to the start of the region
|
||||
m_next = m_head;
|
||||
|
||||
// build out the linked list from all the nodes.
|
||||
for (size_t i = 0; i < m_capacity - 1; ++i)
|
||||
m_next[i].next = m_next + i + 1;
|
||||
m_next[m_capacity - 1].next = nullptr;
|
||||
}
|
||||
|
||||
public:
|
||||
// Indexing
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
size_t index (T const *ptr) const
|
||||
{
|
||||
CHECK_LIMIT (cruft::cast::alignment<node const*> (ptr), m_head, m_head + m_capacity);
|
||||
return cruft::cast::alignment<node const*> (ptr) - m_head;
|
||||
return ptr - reinterpret_cast<T*> (m_store);
|
||||
}
|
||||
|
||||
|
||||
@ -255,22 +209,27 @@ namespace cruft {
|
||||
/// guaranteed to point to the first _possible_ allocated value;
|
||||
/// however it may not be _live_ at any given moment.
|
||||
///
|
||||
/// DO NOT use this pointer for indexing as you will be unable to
|
||||
/// account for internal node sizes, alignment, or padding.
|
||||
void * base (void) & { return m_head; }
|
||||
void const* base (void) const& { return m_head; }
|
||||
/// DO NOT use this pointer for indexing as you _may_ be unable to
|
||||
/// account for internal node sizes, alignment, or padding. This is
|
||||
/// why the return type is void.
|
||||
///
|
||||
/// We may be using one particular representation at the moment but
|
||||
/// stability is not guaranteed at this point.
|
||||
void * base (void) & { return m_store; }
|
||||
void const* base (void) const& { return m_store; }
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
T& operator[] (size_t idx) &
|
||||
{
|
||||
CHECK_LIMIT (idx, 0u, capacity ());
|
||||
return *cruft::cast::alignment<T*> (&m_head[idx].data[0]);
|
||||
return reinterpret_cast<T*> (m_store) [idx];
|
||||
}
|
||||
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
T const& operator[] (size_t idx) const&
|
||||
{
|
||||
CHECK_LIMIT (idx, 0u, capacity ());
|
||||
return *cruft::cast::alignment<T const*> (&m_head[idx].data[0]);
|
||||
return reinterpret_cast<T*> (m_store) [idx];
|
||||
}
|
||||
};
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user