229 lines
6.0 KiB
C++
229 lines
6.0 KiB
C++
/*
|
|
* This file is part of libgim.
|
|
*
|
|
* libgim is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Copyright 2013 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "sha1.hpp"
|
|
|
|
#include "bitwise.hpp"
|
|
#include "endian.hpp"
|
|
#include "types.hpp"
|
|
#include "types/casts.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
|
|
|
|
using util::hash::SHA1;
|
|
using std::numeric_limits;
|
|
using std::begin;
|
|
using std::end;
|
|
|
|
|
|
// Logical function for sequence of rounds
|
|
static inline uint32_t
|
|
f_00 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return (B & C) | (~B & D); }
|
|
|
|
|
|
static inline uint32_t
|
|
f_20 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return B ^ C ^ D; }
|
|
|
|
|
|
static inline uint32_t
|
|
f_40 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return (B & C) | (B & D) | (C & D); }
|
|
|
|
|
|
static inline uint32_t
|
|
f_60 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return B ^ C ^ D; }
|
|
|
|
|
|
// Constant words for sequence of rounds
|
|
static const uint32_t K_00 = 0x5A827999;
|
|
static const uint32_t K_20 = 0x6ED9EBA1;
|
|
static const uint32_t K_40 = 0x8F1BBCDC;
|
|
static const uint32_t K_60 = 0xCA62C1D6;
|
|
|
|
|
|
static const uint32_t DEFAULT_H0 = 0x67452301;
|
|
static const uint32_t DEFAULT_H1 = 0xEFCDAB89;
|
|
static const uint32_t DEFAULT_H2 = 0x98BADCFE;
|
|
static const uint32_t DEFAULT_H3 = 0x10325476;
|
|
static const uint32_t DEFAULT_H4 = 0xC3D2E1F0;
|
|
|
|
|
|
static const size_t BLOCK_SIZE = 16;
|
|
|
|
|
|
SHA1::SHA1()
|
|
{
|
|
reset ();
|
|
}
|
|
|
|
|
|
void
|
|
SHA1::reset (void) {
|
|
total = 0;
|
|
|
|
H[0] = DEFAULT_H0;
|
|
H[1] = DEFAULT_H1;
|
|
H[2] = DEFAULT_H2;
|
|
H[3] = DEFAULT_H3;
|
|
H[4] = DEFAULT_H4;
|
|
|
|
std::fill (begin (W), end (W), 0);
|
|
|
|
state = READY;
|
|
}
|
|
|
|
|
|
void
|
|
SHA1::update (const uint8_t *data, size_t size) {
|
|
assert (state == READY);
|
|
assert (numeric_limits<decltype(total)>::max () - total >= size);
|
|
|
|
|
|
while (size > 0) {
|
|
size_t offset = total % BLOCK_SIZE;
|
|
size_t tocopy = std::min (BLOCK_SIZE - offset, size);
|
|
|
|
for (size_t i = 0; i < tocopy; ++i) {
|
|
size_t octet = sizeof(W[0]) - (offset + i) % sizeof (W[0]);
|
|
size_t index = (offset / sizeof (W[0]) + i) / sizeof (W[0]);
|
|
|
|
size_t shift = (octet - 1) * 8u;
|
|
uint32_t byte = *data++;
|
|
|
|
W[index] |= byte << shift;
|
|
}
|
|
|
|
total += tocopy;
|
|
|
|
if (total % BLOCK_SIZE == 0) {
|
|
process ();
|
|
std::fill (begin (W), end (W), 0);
|
|
}
|
|
size -= tocopy;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
SHA1::process (void) {
|
|
// Shuffle the work buffer a bit and initialise the state variables
|
|
for (size_t t = 16; t < 80; ++t)
|
|
W[t] = rotatel (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
|
|
|
|
uint32_t A = H[0],
|
|
B = H[1],
|
|
C = H[2],
|
|
D = H[3],
|
|
E = H[4];
|
|
|
|
// Perform each of the four rounds
|
|
#define ROTATE_STATE(i) do { \
|
|
uint32_t temp = rotatel (A, 5) + f_##i (B, C, D) + E + W[t] + K_##i; \
|
|
E = D; \
|
|
D = C; \
|
|
C = rotatel (B, 30); \
|
|
B = A; \
|
|
A = temp; \
|
|
} while (0)
|
|
|
|
for (size_t t = 0; t < 20; ++t) ROTATE_STATE(00);
|
|
for (size_t t = 20; t < 40; ++t) ROTATE_STATE(20);
|
|
for (size_t t = 40; t < 60; ++t) ROTATE_STATE(40);
|
|
for (size_t t = 60; t < 80; ++t) ROTATE_STATE(60);
|
|
|
|
// Save out the intermediate hash again
|
|
H[0] += A;
|
|
H[1] += B;
|
|
H[2] += C;
|
|
H[3] += D;
|
|
H[4] += E;
|
|
}
|
|
|
|
|
|
void
|
|
SHA1::finish (void) {
|
|
size_t index = (total / sizeof (W[0])) % BLOCK_SIZE;
|
|
size_t octet = sizeof (W[0]) - total % sizeof (W[0]) - 1;
|
|
|
|
W[index] |= 0x80 << octet * 8;
|
|
if (index >= BLOCK_SIZE - 2) {
|
|
W[elems(W) - 2] = 0;
|
|
W[elems(W) - 1] = 0;
|
|
process();
|
|
std::fill (begin (W), end (W), 0);
|
|
index = 0;
|
|
} else {
|
|
++index;
|
|
}
|
|
|
|
std::fill (begin (W) + index, end (W), 0);
|
|
|
|
union {
|
|
uint32_t full;
|
|
uint8_t part[4];
|
|
} swapper;
|
|
|
|
swapper.full = 0;
|
|
swapper.part[3] = uint8_t(total);
|
|
|
|
total *= 8;
|
|
|
|
W[BLOCK_SIZE - 2] = 0x00000000;
|
|
W[BLOCK_SIZE - 1] = total << 24;
|
|
process ();
|
|
|
|
state = FINISHED;
|
|
}
|
|
|
|
|
|
SHA1::digest_t
|
|
SHA1::digest (void) const {
|
|
assert (state == FINISHED);
|
|
|
|
return { {
|
|
size_cast<uint8_t> ((H[0] >> 24u) & 0xFF),
|
|
size_cast<uint8_t> ((H[0] >> 16u) & 0xFF),
|
|
size_cast<uint8_t> ((H[0] >> 8u) & 0xFF),
|
|
size_cast<uint8_t> ((H[0] ) & 0xFF),
|
|
size_cast<uint8_t> ((H[1] >> 24u) & 0xFF),
|
|
size_cast<uint8_t> ((H[1] >> 16u) & 0xFF),
|
|
size_cast<uint8_t> ((H[1] >> 8u) & 0xFF),
|
|
size_cast<uint8_t> ((H[1] ) & 0xFF),
|
|
size_cast<uint8_t> ((H[2] >> 24u) & 0xFF),
|
|
size_cast<uint8_t> ((H[2] >> 16u) & 0xFF),
|
|
size_cast<uint8_t> ((H[2] >> 8u) & 0xFF),
|
|
size_cast<uint8_t> ((H[2] ) & 0xFF),
|
|
size_cast<uint8_t> ((H[3] >> 24u) & 0xFF),
|
|
size_cast<uint8_t> ((H[3] >> 16u) & 0xFF),
|
|
size_cast<uint8_t> ((H[3] >> 8u) & 0xFF),
|
|
size_cast<uint8_t> ((H[3] ) & 0xFF),
|
|
size_cast<uint8_t> ((H[4] >> 24u) & 0xFF),
|
|
size_cast<uint8_t> ((H[4] >> 16u) & 0xFF),
|
|
size_cast<uint8_t> ((H[4] >> 8u) & 0xFF),
|
|
size_cast<uint8_t> ((H[4] ) & 0xFF)
|
|
} };
|
|
}
|