/*
* This file is part of libgim.
*
* libgim is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see .
*
* Copyright 2013 Danny Robson
*/
#include "sha1.hpp"
#include "bitwise.hpp"
#include "endian.hpp"
#include "types.hpp"
#include "types/casts.hpp"
#include
#include
#include
#include
using util::hash::SHA1;
using std::numeric_limits;
using std::begin;
using std::end;
// Logical function for sequence of rounds
static inline uint32_t
f_00 (uint32_t B, uint32_t C, uint32_t D)
{ return (B & C) | (~B & D); }
static inline uint32_t
f_20 (uint32_t B, uint32_t C, uint32_t D)
{ return B ^ C ^ D; }
static inline uint32_t
f_40 (uint32_t B, uint32_t C, uint32_t D)
{ return (B & C) | (B & D) | (C & D); }
static inline uint32_t
f_60 (uint32_t B, uint32_t C, uint32_t D)
{ return B ^ C ^ D; }
// Constant words for sequence of rounds
static const uint32_t K_00 = 0x5A827999;
static const uint32_t K_20 = 0x6ED9EBA1;
static const uint32_t K_40 = 0x8F1BBCDC;
static const uint32_t K_60 = 0xCA62C1D6;
static const uint32_t DEFAULT_H0 = 0x67452301;
static const uint32_t DEFAULT_H1 = 0xEFCDAB89;
static const uint32_t DEFAULT_H2 = 0x98BADCFE;
static const uint32_t DEFAULT_H3 = 0x10325476;
static const uint32_t DEFAULT_H4 = 0xC3D2E1F0;
static const size_t BLOCK_SIZE = 16;
SHA1::SHA1()
{
reset ();
}
void
SHA1::reset (void) {
total = 0;
H[0] = DEFAULT_H0;
H[1] = DEFAULT_H1;
H[2] = DEFAULT_H2;
H[3] = DEFAULT_H3;
H[4] = DEFAULT_H4;
std::fill (begin (W), end (W), 0);
state = READY;
}
void
SHA1::update (const uint8_t *data, size_t size) {
assert (state == READY);
assert (numeric_limits::max () - total >= size);
while (size > 0) {
size_t offset = total % BLOCK_SIZE;
size_t tocopy = std::min (BLOCK_SIZE - offset, size);
for (size_t i = 0; i < tocopy; ++i) {
size_t octet = sizeof(W[0]) - (offset + i) % sizeof (W[0]);
size_t index = (offset / sizeof (W[0]) + i) / sizeof (W[0]);
size_t shift = (octet - 1) * 8u;
uint32_t byte = *data++;
W[index] |= byte << shift;
}
total += tocopy;
if (total % BLOCK_SIZE == 0) {
process ();
std::fill (begin (W), end (W), 0);
}
size -= tocopy;
}
}
void
SHA1::process (void) {
// Shuffle the work buffer a bit and initialise the state variables
for (size_t t = 16; t < 80; ++t)
W[t] = rotatel (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
uint32_t A = H[0],
B = H[1],
C = H[2],
D = H[3],
E = H[4];
// Perform each of the four rounds
#define ROTATE_STATE(i) do { \
uint32_t temp = rotatel (A, 5) + f_##i (B, C, D) + E + W[t] + K_##i; \
E = D; \
D = C; \
C = rotatel (B, 30); \
B = A; \
A = temp; \
} while (0)
for (size_t t = 0; t < 20; ++t) ROTATE_STATE(00);
for (size_t t = 20; t < 40; ++t) ROTATE_STATE(20);
for (size_t t = 40; t < 60; ++t) ROTATE_STATE(40);
for (size_t t = 60; t < 80; ++t) ROTATE_STATE(60);
// Save out the intermediate hash again
H[0] += A;
H[1] += B;
H[2] += C;
H[3] += D;
H[4] += E;
}
void
SHA1::finish (void) {
size_t index = (total / sizeof (W[0])) % BLOCK_SIZE;
size_t octet = sizeof (W[0]) - total % sizeof (W[0]) - 1;
W[index] |= 0x80 << octet * 8;
if (index >= BLOCK_SIZE - 2) {
W[elems(W) - 2] = 0;
W[elems(W) - 1] = 0;
process();
std::fill (begin (W), end (W), 0);
index = 0;
} else {
++index;
}
std::fill (begin (W) + index, end (W), 0);
union {
uint32_t full;
uint8_t part[4];
} swapper;
swapper.full = 0;
swapper.part[3] = uint8_t(total);
total *= 8;
W[BLOCK_SIZE - 2] = 0x00000000;
W[BLOCK_SIZE - 1] = total << 24;
process ();
state = FINISHED;
}
SHA1::digest_t
SHA1::digest (void) const {
assert (state == FINISHED);
return { {
size_cast ((H[0] >> 24u) & 0xFF),
size_cast ((H[0] >> 16u) & 0xFF),
size_cast ((H[0] >> 8u) & 0xFF),
size_cast ((H[0] ) & 0xFF),
size_cast ((H[1] >> 24u) & 0xFF),
size_cast ((H[1] >> 16u) & 0xFF),
size_cast ((H[1] >> 8u) & 0xFF),
size_cast ((H[1] ) & 0xFF),
size_cast ((H[2] >> 24u) & 0xFF),
size_cast ((H[2] >> 16u) & 0xFF),
size_cast ((H[2] >> 8u) & 0xFF),
size_cast ((H[2] ) & 0xFF),
size_cast ((H[3] >> 24u) & 0xFF),
size_cast ((H[3] >> 16u) & 0xFF),
size_cast ((H[3] >> 8u) & 0xFF),
size_cast ((H[3] ) & 0xFF),
size_cast ((H[4] >> 24u) & 0xFF),
size_cast ((H[4] >> 16u) & 0xFF),
size_cast ((H[4] >> 8u) & 0xFF),
size_cast ((H[4] ) & 0xFF)
} };
}