libcruft-util/tools/noise.cpp
Danny Robson 91a01c2742 noise-tool: give a random offset per-image
prevents gridpoint artefacts being so obvious
2015-09-25 15:16:15 +10:00

356 lines
12 KiB
C++

#include "image.hpp"
#include "noise.hpp"
#include "noise/fractal/fbm.hpp"
#include "noise/fractal/hetero.hpp"
#include "noise/fractal/hmf.hpp"
#include "noise/fractal/rmf.hpp"
#include "noise/fractal/runtime.hpp"
#include "noise/lerp.hpp"
#include "noise/basis/constant.hpp"
#include "noise/basis/value.hpp"
#include "noise/basis/patch.hpp"
#include "noise/basis/perlin.hpp"
#include "noise/basis/worley.hpp"
#include "noise/turbulence.hpp"
#include "noise/basis/runtime.hpp"
#include "noise/midpoint.hpp"
#include "extent.hpp"
#include "colour.hpp"
#include "netpbm.hpp"
#include "types.hpp"
#include "cmdopt.hpp"
#include "hash.hpp"
#include "region.hpp"
///////////////////////////////////////////////////////////////////////////////
template struct util::noise::fractal::fbm<float, util::noise::basis::perlin<float,util::lerp::cubic>>;
template struct util::noise::fractal::hmf<float, util::noise::basis::value<float,util::lerp::cubic>>;
template struct util::noise::fractal::rmf<float, util::noise::basis::constant<float>>;
template struct util::noise::fractal::hetero<float, util::noise::basis::worley<float,2>>;
///////////////////////////////////////////////////////////////////////////////
enum basis_t {
VALUE,
PERLIN,
WORLEY,
PATCH
};
//-----------------------------------------------------------------------------
enum fractal_t {
FBM,
HMF,
RMF,
HETERO,
};
//-----------------------------------------------------------------------------
enum lerp_t {
LINEAR,
CUBIC,
QUINTIC,
COSINE,
TRUNC
};
//-----------------------------------------------------------------------------
std::istream&
operator>> (std::istream &is, basis_t &b)
{
std::string name;
is >> name;
b = name == "value" ? VALUE :
name == "perlin" ? PERLIN :
name == "worley" ? WORLEY :
name == "patch" ? PATCH :
(is.setstate (std::istream::failbit), b);
return is;
}
//-----------------------------------------------------------------------------
std::ostream&
operator<< (std::ostream &os, basis_t b)
{
switch (b) {
case VALUE: os << "value"; return os;
case PERLIN: os << "perlin"; return os;
case WORLEY: os << "worley"; return os;
case PATCH: os << "patch"; return os;
default:
unreachable ();
}
}
//-----------------------------------------------------------------------------
std::istream&
operator>> (std::istream &is, fractal_t &f)
{
std::string name;
is >> name;
f = name == "fbm" ? FBM :
name == "hmf" ? HMF :
name == "rmf" ? RMF :
name == "hetero" ? HETERO :
(is.setstate (std::istream::failbit), f);
return is;
}
//-----------------------------------------------------------------------------
std::ostream&
operator<< (std::ostream &os, fractal_t f)
{
switch (f) {
case FBM: os << "fbm"; return os;
case HMF: os << "hmf"; return os;
case RMF: os << "rmf"; return os;
case HETERO: os << "hetero"; return os;
default:
unreachable ();
};
}
//-----------------------------------------------------------------------------
std::istream&
operator>> (std::istream &is, lerp_t &l)
{
std::string name;
is >> name;
l = name == "linear" ? LINEAR :
name == "cubic" ? CUBIC :
name == "quintic" ? QUINTIC :
name == "cosine" ? COSINE :
name == "trunc" ? TRUNC :
(is.setstate (std::istream::failbit), l);
return is;
}
//-----------------------------------------------------------------------------
std::ostream&
operator<< (std::ostream &os, lerp_t &l)
{
switch (l) {
case LINEAR: os << "linear"; return os;
case CUBIC: os << "cubic"; return os;
case QUINTIC: os << "quintic"; return os;
case COSINE: os << "cosine"; return os;
case TRUNC: os << "trunc"; return os;
default:
unreachable ();
}
}
///////////////////////////////////////////////////////////////////////////////
int
main (int argc, char **argv)
{
// setup default variables
#ifdef ENABLE_DEBUGGING
util::extent2u res {320, 240};
#else
util::extent2u res {1920, 1080};
#endif
srand (time (nullptr));
uint64_t seed = time (nullptr);
basis_t basis = PERLIN;
fractal_t fractal = FBM;
lerp_t lerp = QUINTIC;
unsigned octaves = 8;
float H = std::numeric_limits<float>::quiet_NaN ();
float lacunarity = std::numeric_limits<float>::quiet_NaN ();
float amplitude = std::numeric_limits<float>::quiet_NaN ();
float gain = std::numeric_limits<float>::quiet_NaN ();
float offset = std::numeric_limits<float>::quiet_NaN ();
float scale = 1.f;
float turbulence = 0.f;
unsigned single = 0;
float width = 0;
// fill variables from arguments
util::cmdopt::parser args;
args.add<util::cmdopt::option::value<size_t>> ('w', "width", "output image width", res.w);
args.add<util::cmdopt::option::value<size_t>> ('h', "height", "output image height", res.h);
args.add<util::cmdopt::option::value<uint64_t>> ('s', "seed", "random seed", seed);
args.add<util::cmdopt::option::value<basis_t>> ('b', "basis", "primary basis function", basis);
args.add<util::cmdopt::option::value<fractal_t>> ('f', "fractal", "primary fractal function", fractal);
args.add<util::cmdopt::option::value<lerp_t>> ('l', "lerp", "interpolation algorithm", lerp);
args.add<util::cmdopt::option::value<unsigned>> ('o', "octaves", "total fractal iterations", octaves);
args.add<util::cmdopt::option::count<unsigned>> ('1', "single", "single octave", single);
args.add<util::cmdopt::option::value<float>> ('H', "hurst", "Hurst exponent", H);
args.add<util::cmdopt::option::value<float>> ('G', "gain", "octave gain", gain);
args.add<util::cmdopt::option::value<float>> ('A', "amplitude", "base amplitude", amplitude);
args.add<util::cmdopt::option::value<float>> ('L', "lacunarity", "frequency multiplier", lacunarity);
args.add<util::cmdopt::option::value<float>> ('x', "scale", "frequency multiplier", scale);
args.add<util::cmdopt::option::value<float>> ('O', "offset", "hetero offset", offset);
args.add<util::cmdopt::option::value<float>> ('t', "turbulence", "turbulence scale", turbulence);
args.add<util::cmdopt::option::value<float>> ('W', "patch-width", "patch blur width", width);
args.scan (argc, argv);
#if !defined(ENABLE_DEBUGGING) and !defined(PLATFORM_WIN32)
if (isatty (fileno (stdout))) {
std::cerr << "cowardly refusing to dump binary data to console\n";
return EXIT_FAILURE;
}
#endif
util::noise::turbulence<
float,
util::noise::fractal::runtime<
float,
util::noise::basis::runtime<float>
>,
util::noise::fractal::fbm<
float,
util::noise::basis::perlin<
float,
util::lerp::cubic
>
>
> t (seed, { turbulence, turbulence });
auto &f = t.data;
switch (fractal) {
using namespace util::noise;
case FBM: f.reset<fractal::fbm <float,basis::runtime<float>>> (seed); break;
case HMF: f.reset<fractal::hmf <float,basis::runtime<float>>> (seed); break;
case RMF: f.reset<fractal::rmf <float,basis::runtime<float>>> (seed); break;
case HETERO: {
auto &child = f.reset<fractal::hetero<float,basis::runtime<float>>> (seed);
if (!std::isnan (offset))
child.offset (offset);
break;
}
default:
unreachable ();
}
auto &b = f.basis ();
switch (basis) {
using namespace util::noise;
case PERLIN: {
switch (lerp) {
case LINEAR: b.reset<basis::perlin<float,util::lerp::linear>> (seed); break;
case CUBIC: b.reset<basis::perlin<float,util::lerp::cubic>> (seed); break;
case QUINTIC: b.reset<basis::perlin<float,util::lerp::quintic>> (seed); break;
case COSINE: b.reset<basis::perlin<float,util::lerp::cosine>> (seed); break;
case TRUNC: b.reset<basis::perlin<float,util::lerp::trunc>> (seed); break;
default:
unreachable ();
}
break;
}
case VALUE: {
switch (lerp) {
case LINEAR: b.reset<basis::value<float,util::lerp::linear>> (seed); break;
case CUBIC: b.reset<basis::value<float,util::lerp::cubic>> (seed); break;
case QUINTIC: b.reset<basis::value<float,util::lerp::quintic>> (seed); break;
case COSINE: b.reset<basis::value<float,util::lerp::cosine>> (seed); break;
case TRUNC: b.reset<basis::value<float,util::lerp::trunc>> (seed); break;
default:
unreachable ();
}
break;
}
case WORLEY: {
b.reset<util::noise::basis::worley<float>> (seed);
break;
}
case PATCH: {
b.reset<util::noise::basis::patch<float>> (seed, width);
break;
}
default:
unreachable ();
}
t.seed (seed);
f.octaves (octaves);
f.frequency (scale / res.w);
if (!std::isnan (H)) f.H (H);
if (!std::isnan (lacunarity)) f.lacunarity (lacunarity);
if (!std::isnan (amplitude)) f.amplitude (amplitude);
if (!std::isnan (gain)) f.gain (gain);
t.perturb[0].frequency ( scale / res.w);
t.perturb[1].frequency ( scale / res.w);
util::image::buffer<float> img (res);
// XXX: offset slightly to avoid origin artefacts in some basis functions
const auto OFFSET = util::vector2f {
(util::hash::mix ( seed) & 0xFFFF) / float (0xFFFF),
(util::hash::mix (util::hash::mix (seed)) & 0xFFFF) / float (0xFFFF)
} / f.frequency ();
{
for (size_t y = 0; y < res.h; ++y)
for (size_t x = 0; x < res.w; ++x)
img[{x, y}] = t (util::point2f {float (x), float (y)} + OFFSET);
}
// working on the assumption that all octave images are based on summation,
// subtract the image with one less octave from our current image to leave
// us with the highest octave contribution only. this is hideously
// inefficient, but it's not an operation we care about in general.
if (single && f.octaves () != 1) {
auto oldoctaves = f.octaves ();
f.octaves (oldoctaves - 1);
auto prev = img.clone ();
for (size_t y = 0; y < res.h; ++y)
for (size_t x = 0; x < res.w; ++x)
prev[{x,y}] = t (util::point2f {float (x), float (y)} + OFFSET);
CHECK_EQ (img.stride (), prev.stride ());
for (size_t i = 0; i < img.size (); ++i)
img[i] -= prev[i];
f.octaves (oldoctaves);
}
// rescale into the range [0, 1]
auto range = std::minmax_element (img.begin (), img.end ());
auto inc = *range.first;
auto div = *range.second - *range.first;
std::cerr << '[' << *range.first << ',' << *range.second << "]\n";
std::transform (img.begin (), img.end (), img.begin (), [inc,div] (auto i) { return (i - inc) / div; });
// write the images to disk
util::pgm::write (img.cast<uint8_t> (), std::cout);
}