libcruft-vk/traits.hpp

545 lines
20 KiB
C++

/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Copyright:
* 2016-2017, Danny Robson <danny@nerdcruft.net>
*/
#ifndef CRUFT_VK_TRAITS_HPP
#define CRUFT_VK_TRAITS_HPP
#include "fwd.hpp"
#include "vk.hpp"
#include <cruft/util/variadic.hpp>
#include <tuple>
#include <type_traits>
namespace cruft::vk {
///////////////////////////////////////////////////////////////////////////
/// describes the native type that corresponds to a given vk-cruft type.
template <typename> struct native_traits { };
//-------------------------------------------------------------------------
template <> struct native_traits<buffer> { using type = VkBuffer; };
template <> struct native_traits<buffer_view> { using type = VkBufferView; };
template <> struct native_traits<command_buffer> { using type = VkCommandBuffer; };
template <> struct native_traits<command_pool> { using type = VkCommandPool; };
template <> struct native_traits<device_memory> { using type = VkDeviceMemory; };
template <> struct native_traits<device> { using type = VkDevice; };
template <> struct native_traits<event> { using type = VkEvent; };
template <> struct native_traits<fence> { using type = VkFence; };
template <> struct native_traits<framebuffer> { using type = VkFramebuffer; };
template <> struct native_traits<image_view> { using type = VkImageView; };
template <> struct native_traits<instance> { using type = VkInstance; };
template <> struct native_traits<physical_device> { using type = VkPhysicalDevice; };
template <> struct native_traits<pipeline_cache> { using type = VkPipelineCache; };
template <> struct native_traits<pipeline_layout> { using type = VkPipelineLayout; };
template <> struct native_traits<queue> { using type = VkQueue; };
template <> struct native_traits<render_pass> { using type = VkRenderPass; };
template <> struct native_traits<semaphore> { using type = VkSemaphore; };
template <> struct native_traits<shader_module> { using type = VkShaderModule; };
template <> struct native_traits<surface> { using type = VkSurfaceKHR; };
template <> struct native_traits<swapchain> { using type = VkSwapchainKHR; };
template <> struct native_traits<debug_report> { using type = VkDebugReportCallbackEXT; };
//-------------------------------------------------------------------------
template <>
struct native_traits<pipeline<bindpoint::GRAPHICS>>
{ using type = VkPipeline; };
template <>
struct native_traits<pipeline<bindpoint::COMPUTE>>
{ using type = VkPipeline; };
//-------------------------------------------------------------------------
template <typename T>
using native_t = typename native_traits<T>::type;
///////////////////////////////////////////////////////////////////////////
/// defines whether a type is a native vulkan object.
///
/// note that this only returns true for handle types, not parameter types.
/// eg, VkDevice will return true, but VkDeviceCreateInfo will not.
template <typename>
struct is_native : public std::false_type { };
//-------------------------------------------------------------------------
#define DEFINE_IS_HANDLE(KLASS) \
template <> \
struct is_native<KLASS> : \
public std::true_type \
{ };
VK_NATIVE_TYPE_MAP (DEFINE_IS_HANDLE)
#undef DEFINE_IS_HANDLE
//-------------------------------------------------------------------------
template <typename T>
static constexpr auto is_native_v = is_native<T>::value;
///////////////////////////////////////////////////////////////////////////
template <typename>
struct is_wrapper : public std::false_type { };
//-------------------------------------------------------------------------
#define IS_WRAPPER(KLASS) \
template <> \
struct is_wrapper<KLASS> : \
public std::true_type \
{ };
VK_TYPE_MAP(IS_WRAPPER)
#undef IS_WRAPPER
//-------------------------------------------------------------------------
template <typename T>
struct is_wrapper<owned_ptr<T>> :
public is_wrapper<T>
{ };
//-------------------------------------------------------------------------
template <typename T>
static constexpr auto is_wrapper_v = is_wrapper<T>::value;
///////////////////////////////////////////////////////////////////////////
/// determines whether a function conceptually returns a singular Vulkan
/// data structure.
///
/// that is: is the last parameter a pointer to a Vulkan data type?
///
/// a result of true probably implies the function type can be passed to
/// error::try_query
template <typename FunctionT>
struct is_query_function : public std::false_type {};
//-------------------------------------------------------------------------
namespace detail {
template <typename ...Args>
struct is_query_args : public std::conditional_t<
std::is_pointer_v<
std::tuple_element_t<
sizeof...(Args) - 1,
std::tuple<Args...>
>
> && is_native_v<
std::remove_pointer_t<
std::tuple_element_t<
sizeof...(Args) - 1,
std::tuple<Args...>
>
>
>,
std::true_type,
std::false_type
> { };
}
//-------------------------------------------------------------------------
template <typename ReturnT, typename ...Args>
struct is_query_function<
ReturnT(Args...)noexcept
> : detail::is_query_args<Args...> { };
template <typename ReturnT, typename ...Args>
struct is_query_function<
ReturnT(*)(Args...)noexcept
> : detail::is_query_args<Args...> { };
template <typename ReturnT, typename ...Args>
struct is_query_function<
ReturnT(&)(Args...)noexcept
> : detail::is_query_args<Args...> { };
//-------------------------------------------------------------------------
template <typename FunctionT>
constexpr auto is_query_function_v = is_query_function<FunctionT>::value;
///////////////////////////////////////////////////////////////////////////
/// determines whether a function conceptually returns an array of values.
///
/// that is: does it take/return uint32_t and Vulkan types as the last two
/// pointer parameters.
///
/// a result of true likely implies such a function pointer can be passed
/// to error::try_values
template <typename FunctionT>
struct is_values_function : public std::false_type {};
//-------------------------------------------------------------------------
namespace detail {
template <typename ...Args>
struct is_values_args : public std::conditional_t<
std::is_same_v<
uint32_t*,
std::tuple_element_t<
sizeof...(Args) - 2,
std::tuple<Args...>
>
> && std::is_pointer_v<
std::tuple_element_t<
sizeof...(Args) - 1,
std::tuple<Args...>
>
> && is_native_v<
std::remove_pointer_t<
std::tuple_element_t<
sizeof...(Args) - 1,
std::tuple<Args...>
>
>
>,
std::true_type,
std::false_type
> { };
};
//-------------------------------------------------------------------------
template <typename ReturnT, typename ...Args>
struct is_values_function<
ReturnT(Args...) noexcept
> : detail::is_values_args<Args...> { };
//-------------------------------------------------------------------------
template <typename ReturnT, typename ...Args>
struct is_values_function<
ReturnT(&)(Args...) noexcept
> : detail::is_values_args<Args...> { };
//-------------------------------------------------------------------------
template <typename ReturnT, typename ...Args>
struct is_values_function<
ReturnT(*)(Args...) noexcept
> : detail::is_values_args<Args...> { };
//-------------------------------------------------------------------------
template <typename FunctionT>
constexpr auto is_values_function_v = is_values_function<FunctionT>::value;
///////////////////////////////////////////////////////////////////////////
/// return the native value for the wrapper object
template <typename SelfT>
constexpr auto
native (const object<SelfT> &obj)
{
return obj.native ();
}
///------------------------------------------------------------------------
/// return the native handle as is; supplied for implementation convenience
/// in other higher order methods.
template <
typename NativeT,
typename = std::enable_if_t<is_native_v<NativeT>, void>
>
constexpr auto
native (NativeT val)
{
return val;
}
///------------------------------------------------------------------------
/// return the underlying native value by querying the data object (not the
/// owner object).
template <typename SelfT>
constexpr auto
native (const owned_ptr<SelfT> &ptr)
{
return native (ptr.get ());
}
///------------------------------------------------------------------------
/// try to return the vulkan native type if there is one, else return the
/// value we were given.
template <typename T, typename DecayT = std::decay_t<T>>
constexpr auto
maybe_native (T &&t)
{
if constexpr (is_wrapper_v<DecayT>)
return native (t);
else if constexpr (is_native_v<DecayT>)
return native (t);
else
return t;
}
///////////////////////////////////////////////////////////////////////////
/// describes the corresponding value for sType in native structures
template <typename>
struct structure_type {};
//-------------------------------------------------------------------------
#define DEFINE_STRUCTURE_TYPE(KLASS,VALUE) \
template <> \
struct structure_type<KLASS> : \
public std::integral_constant< \
VkStructureType, \
PASTE(VK_STRUCTURE_TYPE_,VALUE) \
> \
{ }
DEFINE_STRUCTURE_TYPE (VkInstanceCreateInfo, INSTANCE_CREATE_INFO);
DEFINE_STRUCTURE_TYPE (VkApplicationInfo, APPLICATION_INFO);
DEFINE_STRUCTURE_TYPE (VkDeviceQueueCreateInfo, DEVICE_QUEUE_CREATE_INFO);
DEFINE_STRUCTURE_TYPE (VkDeviceCreateInfo, DEVICE_CREATE_INFO);
DEFINE_STRUCTURE_TYPE (VkSwapchainCreateInfoKHR, SWAPCHAIN_CREATE_INFO_KHR);
DEFINE_STRUCTURE_TYPE (VkImageViewCreateInfo, IMAGE_VIEW_CREATE_INFO);
DEFINE_STRUCTURE_TYPE (VkShaderModuleCreateInfo, SHADER_MODULE_CREATE_INFO);
DEFINE_STRUCTURE_TYPE (VkPipelineShaderStageCreateInfo, PIPELINE_SHADER_STAGE_CREATE_INFO);
DEFINE_STRUCTURE_TYPE (VkDebugReportCallbackCreateInfoEXT,
DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT);
#undef DEFINE_STRUCTURE_TYPE
//-------------------------------------------------------------------------
template <typename T>
constexpr auto structure_type_v = structure_type<T>::value;
///////////////////////////////////////////////////////////////////////////
/// describes the native type that owns a given native type, and hence
/// forms part of the create/destroy process.
///
/// undefined for types that aren't `owned' types.
template <typename> struct owner_traits {};
template <> struct owner_traits<buffer> { using type = device; };
template <> struct owner_traits<command_pool> { using type = device; };
template <> struct owner_traits<device_memory> { using type = device; };
template <> struct owner_traits<framebuffer> { using type = device; };
template <> struct owner_traits<image_view> { using type = device; };
template <> struct owner_traits<pipeline_layout> { using type = device; };
template <> struct owner_traits<queue> { using type = device; };
template <> struct owner_traits<render_pass> { using type = device; };
template <> struct owner_traits<semaphore> { using type = device; };
template <> struct owner_traits<shader_module> { using type = device; };
template <> struct owner_traits<surface> { using type = instance; };
template <> struct owner_traits<swapchain> { using type = device; };
template <> struct owner_traits<pipeline<bindpoint::GRAPHICS>> { using type = device; };
template <> struct owner_traits<pipeline<bindpoint::COMPUTE>> { using type = device; };
template <> struct owner_traits<debug_report> { using type = instance; };
template <typename T>
using owner_t = typename owner_traits<T>::type;
///////////////////////////////////////////////////////////////////////////
/// describes the parameter struct used to create a given vulkan type.
///
/// explicitly does not operate on vk-cruft types, only native types.
template <typename>
struct create_info { };
//-------------------------------------------------------------------------
#define DEFINE_CREATE_INFO(TARGET,INFO) \
template <> \
struct create_info<TARGET> \
{ using type = INFO; }
DEFINE_CREATE_INFO (VkImageViewCreateInfo, VkImageViewCreateInfo);
DEFINE_CREATE_INFO (VkShaderModule, VkShaderModuleCreateInfo);
DEFINE_CREATE_INFO (VkPipelineLayout, VkPipelineLayoutCreateInfo);
#undef DEFINE_CREATE_INFO
//-------------------------------------------------------------------------
template <typename T>
using create_info_t = typename create_info<T>::type;
///////////////////////////////////////////////////////////////////////////
/// lists the `create' and `destroy' methods for a given native type.
///
/// XXX: if such a function does not exist anywhere then we currently use
/// tuple::ignore to simplify implementation elsewhere. we should probably
/// investigate std::is_detected for these cases though.
///
/// clang#18781: we make use of references types extensively here to
/// workaround a potential ODR bug in clang which results in undefined
/// references.
/// or potentially i'm being too clever for my own good, but it works fine
/// in gcc...
template <typename>
struct life_traits { };
//-------------------------------------------------------------------------
template <> struct life_traits<VkInstance> {
static constexpr auto& create = vkCreateInstance;
static constexpr auto& destroy = vkDestroyInstance;
};
template <> struct life_traits<VkDevice> {
static constexpr auto& create = vkCreateDevice;
static constexpr auto& destroy = vkDestroyDevice;
};
template <> struct life_traits<VkImageView> {
static constexpr auto& create = vkCreateImageView;
static constexpr auto& destroy = vkDestroyImageView;
};
template <> struct life_traits<VkCommandPool> {
static constexpr auto& create = vkCreateCommandPool;
static constexpr auto& destroy = vkDestroyCommandPool;
};
template <> struct life_traits<VkFence> {
static constexpr auto& create = vkCreateFence;
static constexpr auto& destroy = vkDestroyFence;
};
template <> struct life_traits<VkSemaphore> {
static constexpr auto& create = vkCreateSemaphore;
static constexpr auto& destroy = vkDestroySemaphore;
};
template <> struct life_traits<VkEvent> {
static constexpr auto& create = vkCreateEvent;
static constexpr auto& destroy = vkDestroyEvent;
};
template <> struct life_traits<VkRenderPass> {
static constexpr auto& create = vkCreateRenderPass;
static constexpr auto& destroy = vkDestroyRenderPass;
};
template <> struct life_traits<VkFramebuffer> {
static constexpr auto& create = vkCreateFramebuffer;
static constexpr auto& destroy = vkDestroyFramebuffer;
};
template <> struct life_traits<VkShaderModule> {
static constexpr auto& create = vkCreateShaderModule;
static constexpr auto& destroy = vkDestroyShaderModule;
};
template <> struct life_traits<VkSurfaceKHR> {
static constexpr auto& destroy = vkDestroySurfaceKHR;
};
template <>
struct life_traits<VkQueue> {
static constexpr auto& create = vkGetDeviceQueue;
static constexpr auto destroy = ::cruft::variadic::ignore<
native_t<owner_t<queue>>,
native_t<queue>,
const VkAllocationCallbacks*
>;
};
template <> struct life_traits<VkPipelineLayout> {
static constexpr auto& create = vkCreatePipelineLayout;
static constexpr auto& destroy = vkDestroyPipelineLayout;
};
template <> struct life_traits<VkPipelineCache> {
static constexpr auto& create = vkCreatePipelineCache;
static constexpr auto& destroy = vkDestroyPipelineCache;
};
template <> struct life_traits<VkDeviceMemory> {
static constexpr auto& create = vkAllocateMemory;
static constexpr auto& destroy = vkFreeMemory;
};
template <> struct life_traits<VkBuffer> {
static constexpr auto& create = vkCreateBuffer;
static constexpr auto& destroy = vkDestroyBuffer;
};
template <> struct life_traits<VkBufferView> {
static constexpr auto& create = vkCreateBufferView;
};
template <> struct life_traits<VkSwapchainKHR> {
static constexpr auto& create = vkCreateSwapchainKHR;
static constexpr auto& destroy = vkDestroySwapchainKHR;
};
template <> struct life_traits<VkDebugReportCallbackEXT> {
static constexpr auto& create = vkCreateDebugReportCallbackEXT;
static constexpr auto& destroy = vkDestroyDebugReportCallbackEXT;
};
// loads all extension function pointers from an instance into the
// appropriate life_traits pointers where available.
//
// this is unambigiously the wrong way of doing things: each instance may
// have their own function pointers to each of the extension methods.
//
// but... we only support one instance for the time being, and this easier.
void load_traits (instance&);
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct wrapper_traits : public life_traits<native_t<T>> { };
//-------------------------------------------------------------------------
template <>
struct wrapper_traits<pipeline<bindpoint::GRAPHICS>> {
static constexpr auto &create = vkCreateGraphicsPipelines;
static constexpr auto &destroy = vkDestroyPipeline;
};
//-------------------------------------------------------------------------
template <>
struct wrapper_traits<pipeline<bindpoint::COMPUTE>> {
static constexpr auto &create = vkCreateComputePipelines;
static constexpr auto &destroy = vkDestroyPipeline;
};
///////////////////////////////////////////////////////////////////////////
/// describes the functions required to enumerate native types
template <typename> struct enum_traits { };
template <> struct enum_traits<VkPhysicalDevice> {
static constexpr auto &enumerate = vkEnumeratePhysicalDevices;
};
}
#endif