618 lines
19 KiB
C++
618 lines
19 KiB
C++
/*
|
|
* This file is part of libgim.
|
|
*
|
|
* libgim is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Copyright 2011-2014 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "matrix.hpp"
|
|
|
|
#include "point.hpp"
|
|
#include "debug.hpp"
|
|
|
|
#include <cstring>
|
|
#include <cmath>
|
|
|
|
using namespace util;
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::transposed (void) const
|
|
{
|
|
matrix<T> m;
|
|
for (size_t i = 0; i < 4; ++i)
|
|
for (size_t j = 0; j < 4; ++j)
|
|
m.values[i][j] = values[j][i];
|
|
return m;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>&
|
|
matrix<T>::transpose (void)
|
|
{
|
|
for (size_t i = 0; i < 4; ++i)
|
|
for (size_t j = i + 1; j < 4; ++j)
|
|
std::swap (values[i][j], values[j][i]);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::inverse (void) const {
|
|
matrix<T> m;
|
|
|
|
T d = det ();
|
|
if (almost_zero (d))
|
|
throw std::runtime_error ("non-singular matrix");
|
|
auto v = values;
|
|
|
|
m.values[0][0] = v[1][2] * v[2][3] * v[3][1] -
|
|
v[1][3] * v[2][2] * v[3][1] +
|
|
v[1][3] * v[2][1] * v[3][2] -
|
|
v[1][1] * v[2][3] * v[3][2] -
|
|
v[1][2] * v[2][1] * v[3][3] +
|
|
v[1][1] * v[2][2] * v[3][3];
|
|
|
|
m.values[0][1] = v[0][3] * v[2][2] * v[3][1] -
|
|
v[0][2] * v[2][3] * v[3][1] -
|
|
v[0][3] * v[2][1] * v[3][2] +
|
|
v[0][1] * v[2][3] * v[3][2] +
|
|
v[0][2] * v[2][1] * v[3][3] -
|
|
v[0][1] * v[2][2] * v[3][3];
|
|
|
|
m.values[0][2] = v[0][2] * v[1][3] * v[3][1] -
|
|
v[0][3] * v[1][2] * v[3][1] +
|
|
v[0][3] * v[1][1] * v[3][2] -
|
|
v[0][1] * v[1][3] * v[3][2] -
|
|
v[0][2] * v[1][1] * v[3][3] +
|
|
v[0][1] * v[1][2] * v[3][3];
|
|
|
|
m.values[0][3] = v[0][3] * v[1][2] * v[2][1] -
|
|
v[0][2] * v[1][3] * v[2][1] -
|
|
v[0][3] * v[1][1] * v[2][2] +
|
|
v[0][1] * v[1][3] * v[2][2] +
|
|
v[0][2] * v[1][1] * v[2][3] -
|
|
v[0][1] * v[1][2] * v[2][3];
|
|
|
|
m.values[1][0] = v[1][3] * v[2][2] * v[3][0] -
|
|
v[1][2] * v[2][3] * v[3][0] -
|
|
v[1][3] * v[2][0] * v[3][2] +
|
|
v[1][0] * v[2][3] * v[3][2] +
|
|
v[1][2] * v[2][0] * v[3][3] -
|
|
v[1][0] * v[2][2] * v[3][3];
|
|
|
|
m.values[1][1] = v[0][2] * v[2][3] * v[3][0] -
|
|
v[0][3] * v[2][2] * v[3][0] +
|
|
v[0][3] * v[2][0] * v[3][2] -
|
|
v[0][0] * v[2][3] * v[3][2] -
|
|
v[0][2] * v[2][0] * v[3][3] +
|
|
v[0][0] * v[2][2] * v[3][3];
|
|
|
|
m.values[1][2] = v[0][3] * v[1][2] * v[3][0] -
|
|
v[0][2] * v[1][3] * v[3][0] -
|
|
v[0][3] * v[1][0] * v[3][2] +
|
|
v[0][0] * v[1][3] * v[3][2] +
|
|
v[0][2] * v[1][0] * v[3][3] -
|
|
v[0][0] * v[1][2] * v[3][3];
|
|
|
|
m.values[1][3] = v[0][2] * v[1][3] * v[2][0] -
|
|
v[0][3] * v[1][2] * v[2][0] +
|
|
v[0][3] * v[1][0] * v[2][2] -
|
|
v[0][0] * v[1][3] * v[2][2] -
|
|
v[0][2] * v[1][0] * v[2][3] +
|
|
v[0][0] * v[1][2] * v[2][3];
|
|
|
|
m.values[2][0] = v[1][1] * v[2][3] * v[3][0] -
|
|
v[1][3] * v[2][1] * v[3][0] +
|
|
v[1][3] * v[2][0] * v[3][1] -
|
|
v[1][0] * v[2][3] * v[3][1] -
|
|
v[1][1] * v[2][0] * v[3][3] +
|
|
v[1][0] * v[2][1] * v[3][3];
|
|
|
|
m.values[2][1] = v[0][3] * v[2][1] * v[3][0] -
|
|
v[0][1] * v[2][3] * v[3][0] -
|
|
v[0][3] * v[2][0] * v[3][1] +
|
|
v[0][0] * v[2][3] * v[3][1] +
|
|
v[0][1] * v[2][0] * v[3][3] -
|
|
v[0][0] * v[2][1] * v[3][3];
|
|
|
|
m.values[2][2] = v[0][1] * v[1][3] * v[3][0] -
|
|
v[0][3] * v[1][1] * v[3][0] +
|
|
v[0][3] * v[1][0] * v[3][1] -
|
|
v[0][0] * v[1][3] * v[3][1] -
|
|
v[0][1] * v[1][0] * v[3][3] +
|
|
v[0][0] * v[1][1] * v[3][3];
|
|
|
|
m.values[2][3] = v[0][3] * v[1][1] * v[2][0] -
|
|
v[0][1] * v[1][3] * v[2][0] -
|
|
v[0][3] * v[1][0] * v[2][1] +
|
|
v[0][0] * v[1][3] * v[2][1] +
|
|
v[0][1] * v[1][0] * v[2][3] -
|
|
v[0][0] * v[1][1] * v[2][3];
|
|
|
|
m.values[3][0] = v[1][2] * v[2][1] * v[3][0] -
|
|
v[1][1] * v[2][2] * v[3][0] -
|
|
v[1][2] * v[2][0] * v[3][1] +
|
|
v[1][0] * v[2][2] * v[3][1] +
|
|
v[1][1] * v[2][0] * v[3][2] -
|
|
v[1][0] * v[2][1] * v[3][2];
|
|
|
|
m.values[3][1] = v[0][1] * v[2][2] * v[3][0] -
|
|
v[0][2] * v[2][1] * v[3][0] +
|
|
v[0][2] * v[2][0] * v[3][1] -
|
|
v[0][0] * v[2][2] * v[3][1] -
|
|
v[0][1] * v[2][0] * v[3][2] +
|
|
v[0][0] * v[2][1] * v[3][2];
|
|
|
|
m.values[3][2] = v[0][2] * v[1][1] * v[3][0] -
|
|
v[0][1] * v[1][2] * v[3][0] -
|
|
v[0][2] * v[1][0] * v[3][1] +
|
|
v[0][0] * v[1][2] * v[3][1] +
|
|
v[0][1] * v[1][0] * v[3][2] -
|
|
v[0][0] * v[1][1] * v[3][2];
|
|
|
|
m.values[3][3] = v[0][1] * v[1][2] * v[2][0] -
|
|
v[0][2] * v[1][1] * v[2][0] +
|
|
v[0][2] * v[1][0] * v[2][1] -
|
|
v[0][0] * v[1][2] * v[2][1] -
|
|
v[0][1] * v[1][0] * v[2][2] +
|
|
v[0][0] * v[1][1] * v[2][2];
|
|
|
|
m /= d;
|
|
return m;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>&
|
|
matrix<T>::invert (void) {
|
|
auto m = *this;
|
|
m.invert ();
|
|
*this = m;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::inverse_affine (void) const {
|
|
return matrix<T>(*this).invert_affine ();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>&
|
|
matrix<T>::invert_affine (void) {
|
|
CHECK (is_affine ());
|
|
|
|
// inv ([ M b ] == [ inv(M) -inv(M).b ]
|
|
// [ 0 1 ]) [ 0 1 ]
|
|
|
|
// Invert the 3x3 M
|
|
T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
|
|
T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
|
|
T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
|
|
|
|
T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
|
|
T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
|
|
T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
|
|
|
|
T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
|
|
T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
|
|
T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
|
|
|
|
T d = values[0][0] * A + values[0][1] * B + values[0][2] * C;
|
|
CHECK_NEQ (d, 0.0);
|
|
|
|
values[0][0] = A / d;
|
|
values[0][1] = D / d;
|
|
values[0][2] = G / d;
|
|
values[1][0] = B / d;
|
|
values[1][1] = E / d;
|
|
values[1][2] = H / d;
|
|
values[2][0] = C / d;
|
|
values[2][1] = F / d;
|
|
values[2][2] = K / d;
|
|
|
|
// Multiply the b
|
|
T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
|
|
T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
|
|
T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
|
|
|
|
values[0][3] = b0;
|
|
values[1][3] = b1;
|
|
values[2][3] = b2;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
T
|
|
matrix<T>::det (void) const {
|
|
return values[0][3] * values[1][2] * values[2][1] * values[3][0] -
|
|
values[0][2] * values[1][3] * values[2][1] * values[3][0] -
|
|
values[0][3] * values[1][1] * values[2][2] * values[3][0] +
|
|
values[0][1] * values[1][3] * values[2][2] * values[3][0] +
|
|
values[0][2] * values[1][1] * values[2][3] * values[3][0] -
|
|
values[0][1] * values[1][2] * values[2][3] * values[3][0] -
|
|
|
|
values[0][3] * values[1][2] * values[2][0] * values[3][1] +
|
|
values[0][2] * values[1][3] * values[2][0] * values[3][1] +
|
|
values[0][3] * values[1][0] * values[2][2] * values[3][1] -
|
|
values[0][0] * values[1][3] * values[2][2] * values[3][1] -
|
|
values[0][2] * values[1][0] * values[2][3] * values[3][1] +
|
|
values[0][0] * values[1][2] * values[2][3] * values[3][1] +
|
|
|
|
values[0][3] * values[1][1] * values[2][0] * values[3][2] -
|
|
values[0][1] * values[1][3] * values[2][0] * values[3][2] -
|
|
values[0][3] * values[1][0] * values[2][1] * values[3][2] +
|
|
values[0][0] * values[1][3] * values[2][1] * values[3][2] +
|
|
values[0][1] * values[1][0] * values[2][3] * values[3][2] -
|
|
values[0][0] * values[1][1] * values[2][3] * values[3][2] -
|
|
|
|
values[0][2] * values[1][1] * values[2][0] * values[3][3] +
|
|
values[0][1] * values[1][2] * values[2][0] * values[3][3] +
|
|
values[0][2] * values[1][0] * values[2][1] * values[3][3] -
|
|
values[0][0] * values[1][2] * values[2][1] * values[3][3] -
|
|
values[0][1] * values[1][0] * values[2][2] * values[3][3] +
|
|
values[0][0] * values[1][1] * values[2][2] * values[3][3];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::operator* (const matrix<T> &rhs) const {
|
|
matrix<T> m;
|
|
|
|
for (unsigned row = 0; row < 4; ++row) {
|
|
for (unsigned col = 0; col < 4; ++col) {
|
|
m.values[row][col] = T {0};
|
|
|
|
for (unsigned inner = 0; inner < 4; ++inner)
|
|
m.values[row][col] += values[row][inner] * rhs.values[inner][col];
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>&
|
|
matrix<T>::operator*=(const matrix<T> &rhs) {
|
|
return *this = *this * rhs;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
vector<4,T>
|
|
matrix<T>::operator* (const vector<4,T> &rhs) const {
|
|
return vector<4,T> {
|
|
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
|
|
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
|
|
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w,
|
|
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
|
|
};
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
point<4,T>
|
|
matrix<T>::operator* (const point<4,T> &rhs) const
|
|
{
|
|
return point<4,T> {
|
|
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
|
|
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
|
|
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w,
|
|
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
|
|
};
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::operator* (T f) const
|
|
{
|
|
matrix<T> out;
|
|
|
|
for (size_t i = 0; i < 4; ++i)
|
|
for (size_t j = 0; j < 4; ++j)
|
|
out.values[i][j] = values[i][j] * f;
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>&
|
|
matrix<T>::operator*= (T f){
|
|
for (size_t i = 0; i < 4; ++i)
|
|
for (size_t j = 0; j < 4; ++j)
|
|
values[i][j] *= f;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::operator/ (T s) const {
|
|
matrix<T> m;
|
|
|
|
for (size_t r = 0; r < m.rows; ++r)
|
|
for (size_t c = 0; c < m.cols; ++c)
|
|
m.values[r][c] = values[r][c] / s;
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>&
|
|
matrix<T>::operator/= (T s) {
|
|
for (size_t r = 0; r < rows; ++r)
|
|
for (size_t c = 0; c < cols; ++c)
|
|
values[r][c] /= s;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
bool
|
|
matrix<T>::operator== (const matrix<T> &rhs) const {
|
|
for (size_t r = 0; r < rows; ++r)
|
|
for (size_t c = 0; c < cols; ++c)
|
|
if (!almost_equal (rhs.values[r][c], values[r][c]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
bool
|
|
matrix<T>::is_affine (void) const {
|
|
return exactly_equal (values[3][0], T {0}) &&
|
|
exactly_equal (values[3][1], T {0}) &&
|
|
exactly_equal (values[3][2], T {0}) &&
|
|
exactly_equal (values[3][3], T {1});
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::ortho (T left, T right,
|
|
T bottom, T top,
|
|
T near, T far)
|
|
{
|
|
CHECK_GT (far, near);
|
|
|
|
T tx = - (right + left) / (right - left);
|
|
T ty = - (top + bottom) / (top - bottom);
|
|
T tz = - (far + near) / (far - near);
|
|
|
|
T rl = 2 / (right - left);
|
|
T tb = 2 / (top - bottom);
|
|
T fn = 2 / (far - near);
|
|
|
|
return { {
|
|
{ rl, 0, 0, tx },
|
|
{ 0, tb, 0, ty },
|
|
{ 0, 0, fn, tz },
|
|
{ 0, 0, 0, 1 },
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::ortho2D (T left, T right,
|
|
T bottom, T top)
|
|
{
|
|
return ortho (left, right, bottom, top, -1, 1);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::perspective (T fov, T aspect, T near, T far)
|
|
{
|
|
T f = std::tan (fov / 2);
|
|
|
|
T tx = 1 / (f * aspect);
|
|
T ty = 1 / f;
|
|
T z1 = (far + near) / (near - far);
|
|
T z2 = (2 * far * near) / (near - far);
|
|
|
|
return { {
|
|
{ tx, 0, 0, 0 },
|
|
{ 0, ty, 0, 0 },
|
|
{ 0, 0, z1, z2 },
|
|
{ 0, 0, -1, 0 }
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Emulates gluLookAt
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::look_at (util::point<3,T> eye,
|
|
util::point<3,T> centre,
|
|
util::vector<3,T> up)
|
|
{
|
|
const auto f = eye.to (centre).normalise ();
|
|
const auto s = cross (f, up).normalise ();
|
|
const auto u = cross (s, f);
|
|
|
|
return { {
|
|
{ s.x, s.y, s.z, -dot (s, eye) },
|
|
{ u.x, u.y, u.z, -dot (u, eye) },
|
|
{ -f.x, -f.y, -f.z, dot (f, eye) },
|
|
{ 0, 0, 0, 1 },
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::translate (util::vector<3,T> v)
|
|
{
|
|
return { {
|
|
{ 1.f, 0.f, 0.f, v.x },
|
|
{ 0.f, 1.f, 0.f, v.y },
|
|
{ 0.f, 0.f, 1.f, v.z },
|
|
{ 0.f, 0.f, 0.f, 1.f },
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::scale (T mag)
|
|
{
|
|
return scale (vector<3,T> (mag));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::scale (util::vector<3,T> v)
|
|
{
|
|
return { {
|
|
{ v.x, 0.f, 0.f, 0.f },
|
|
{ 0.f, v.y, 0.f, 0.f },
|
|
{ 0.f, 0.f, v.z, 0.f },
|
|
{ 0.f, 0.f, 0.f, 1.f }
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
matrix<T>
|
|
matrix<T>::rotate (T angle, util::vector<3,T> about)
|
|
{
|
|
about.normalise ();
|
|
|
|
T c = std::cos (angle);
|
|
T s = std::sin (angle);
|
|
T x = about.x,
|
|
y = about.y,
|
|
z = about.z;
|
|
|
|
return { {
|
|
{ x * x * (1 - c) + c,
|
|
x * y * (1 - c) - z * s,
|
|
x * z * (1 - c) + y * s,
|
|
0
|
|
},
|
|
|
|
{ y * x * (1 - c) + z * s,
|
|
y * y * (1 - c) + c,
|
|
y * z * (1 - c) - x * s,
|
|
0
|
|
},
|
|
|
|
{ z * x * (1 - c) - y * s,
|
|
z * y * (1 - c) + x * s,
|
|
z * z * (1 - c) + c,
|
|
0
|
|
},
|
|
|
|
{ 0, 0, 0, 1 }
|
|
} };
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <typename T>
|
|
const matrix<T>
|
|
matrix<T>::IDENTITY = { { { 1, 0, 0, 0 },
|
|
{ 0, 1, 0, 0 },
|
|
{ 0, 0, 1, 0 },
|
|
{ 0, 0, 0, 1 } } };
|
|
|
|
|
|
template <typename T>
|
|
const matrix<T>
|
|
matrix<T>::ZEROES = { { { 0, 0, 0, 0 },
|
|
{ 0, 0, 0, 0 },
|
|
{ 0, 0, 0, 0 },
|
|
{ 0, 0, 0, 0 } } };
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template struct matrix<float>;
|
|
template struct matrix<double>;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <typename T>
|
|
std::ostream&
|
|
operator<< (std::ostream &os, const matrix<T> &m) {
|
|
os << "{ {" << m.values[0][0] << ", "
|
|
<< m.values[0][1] << ", "
|
|
<< m.values[0][2] << ", "
|
|
<< m.values[0][3] << "}, "
|
|
<< "{" << m.values[1][0] << ", "
|
|
<< m.values[1][1] << ", "
|
|
<< m.values[1][2] << ", "
|
|
<< m.values[1][3] << "}, "
|
|
<< "{" << m.values[2][0] << ", "
|
|
<< m.values[2][1] << ", "
|
|
<< m.values[2][2] << ", "
|
|
<< m.values[2][3] << "}, "
|
|
<< "{" << m.values[3][0] << ", "
|
|
<< m.values[3][1] << ", "
|
|
<< m.values[3][2] << ", "
|
|
<< m.values[3][3] << "} }";
|
|
|
|
return os;
|
|
}
|
|
}
|
|
|
|
template std::ostream& util::operator<< (std::ostream&, const matrix<float>&);
|
|
template std::ostream& util::operator<< (std::ostream&, const matrix<double>&);
|