libcruft-util/iterator.hpp

636 lines
20 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2010-2018 Danny Robson <danny@nerdcruft.net>
*/
#ifndef CRUFT_UTIL_ITERATOR_HPP
#define CRUFT_UTIL_ITERATOR_HPP
#include "types/traits.hpp"
#include "variadic.hpp"
#include "view.hpp"
#include <iterator>
template <typename Base>
class referencing_iterator {
protected:
typedef typename std::enable_if<
is_dereferencable<
typename Base::value_type
>::value,
typename Base::value_type
>::type base_value_type;
public:
typedef typename dereferenced_type<base_value_type>::type value_type ;
typedef typename Base::difference_type difference_type ;
typedef value_type& reference ;
typedef value_type* pointer;
typedef typename Base::iterator_category iterator_category;
protected:
Base m_base;
public:
explicit referencing_iterator (Base _base):
m_base (_base)
{ ; }
referencing_iterator& operator++() { ++m_base; return *this; }
referencing_iterator operator++(int) { auto val = *this; ++m_base; return val; }
bool operator== (const referencing_iterator<Base> &rhs) { return m_base == rhs.m_base; }
bool operator!= (const referencing_iterator<Base> &rhs) { return m_base != rhs.m_base; }
bool operator>= (const referencing_iterator<Base> &rhs) { return m_base >= rhs.m_base; }
bool operator<= (const referencing_iterator<Base> &rhs) { return m_base <= rhs.m_base; }
bool operator> (const referencing_iterator<Base> &rhs) { return m_base > rhs.m_base; }
bool operator< (const referencing_iterator<Base> &rhs) { return m_base < rhs.m_base; }
const value_type& operator*() const
{ return **m_base; }
reference operator*()
{ return **m_base; }
difference_type operator-(const referencing_iterator<Base>& rhs) const { return m_base - rhs.m_base; }
referencing_iterator<Base> operator-(int rhs) const { return referencing_iterator (m_base - rhs); }
referencing_iterator<Base> operator+(int rhs) const { return referencing_iterator (m_base + rhs); }
};
namespace util {
///////////////////////////////////////////////////////////////////////////
/// an output iterator that inserts a delimiter between successive
/// assignments
///
/// very useful for outputting comma seperated lists to an ostream, eg:
///
/// std::copy (
/// std::cbegin (container),
/// std::cend (container),
/// util::infix_iterator<value_type> (os, ", ")
/// );
template <
typename T,
class CharT = char,
class Traits = std::char_traits<CharT>
>
class infix_iterator : public std::iterator<std::output_iterator_tag, void, void, void, void> {
public:
using char_type = CharT;
using traits_type = Traits;
using ostream_type = std::basic_ostream<char_type, traits_type>;
infix_iterator (ostream_type& _output, const CharT *_delimiter):
m_output (_output),
m_delimiter (_delimiter)
{ ; }
infix_iterator&
operator= (const T &value)
{
if (!m_first)
m_output << m_delimiter;
m_output << value;
m_first = false;
return *this;
}
infix_iterator& operator* (void) { return *this; }
infix_iterator& operator++ (void) { return *this; }
infix_iterator& operator++ (int) { return *this; }
private:
bool m_first = true;
ostream_type &m_output;
const CharT *m_delimiter;
};
namespace detail {
template <typename ContainerT, typename CharT>
struct infix_t {
const ContainerT &_container;
const CharT *_delimiter;
};
template <typename ContainerT, typename CharT>
std::ostream&
operator<< (std::ostream &os, const infix_t<ContainerT,CharT> &val)
{
std::copy (std::cbegin (val._container),
std::cend (val._container),
infix_iterator<typename ContainerT::value_type> (os, val._delimiter));
return os;
}
};
/// a helper function that returns an object that will use a
/// util::infix_iterator to output a container's values to an ostream with
/// the given delimiter.
///
/// reduces boilerplate code required to output lists of things
///
/// std::cout << util::make_infix (container) << '\n';
template <typename ContainerT, typename CharT = char>
auto
make_infix (const ContainerT &_container, const CharT *_delimiter = ", ")
{
return detail::infix_t<ContainerT,CharT> { _container, _delimiter };
}
template <typename ValueT, size_t CountV>
auto
make_infix (const ValueT (&val)[CountV])
{
return make_infix (util::view {val});
}
///////////////////////////////////////////////////////////////////////////
//
template <typename IteratorT>
struct numeric_iterator : public std::iterator<
typename std::iterator_traits<IteratorT>::iterator_category,
decltype (+std::declval<typename std::iterator_traits<IteratorT>::value_type> ()),
typename std::iterator_traits<IteratorT>::difference_type,
typename std::iterator_traits<IteratorT>::pointer,
typename std::iterator_traits<IteratorT>::reference
> {
static_assert (std::is_arithmetic_v<typename std::iterator_traits<numeric_iterator>::value_type>);
explicit numeric_iterator (IteratorT _inner):
m_inner (_inner)
{ ; }
auto operator++ (void) { ++m_inner; return *this; }
auto
operator- (const numeric_iterator &rhs) const
{
return typename std::iterator_traits<IteratorT>::difference_type { m_inner - rhs.m_inner };
}
auto
operator* (void) const
{
return +*m_inner;
}
auto operator== (const numeric_iterator &rhs) const { return m_inner == rhs.m_inner; }
auto operator!= (const numeric_iterator &rhs) const { return m_inner != rhs.m_inner; }
private:
IteratorT m_inner;
};
//-------------------------------------------------------------------------
// convenience function that constructs a view of numeric_iterators for a
// provided container
template <typename ContainerT>
auto
numeric_view (ContainerT &data)
{
return util::view {
numeric_iterator (std::begin (data)),
numeric_iterator (std::end (data))
};
}
//-------------------------------------------------------------------------
template <typename ContainerT>
auto
numeric_view (const ContainerT &data)
{
return util::view {
numeric_iterator (std::begin (data)),
numeric_iterator (std::end (data))
};
}
///////////////////////////////////////////////////////////////////////////
/// a trait that stores a type suitable for indexing a container
template <typename, typename = std::void_t<>>
struct index_type { using type = std::size_t; };
//-------------------------------------------------------------------------
template <typename ContainerT>
struct index_type<
ContainerT,
std::void_t<
typename ContainerT::index_t
>
> {
using type = typename ContainerT::index_t;
};
///////////////////////////////////////////////////////////////////////////
template <typename ContainerT>
class indices {
public:
using value_type = typename index_type<ContainerT>::type;
indices (const ContainerT &_container):
m_container (_container)
{ ; }
class iterator {
public:
using iterator_category = std::forward_iterator_tag;
iterator (value_type _index):
m_index (_index)
{ ; }
bool
operator!= (const iterator &rhs) const
{
return m_index != rhs.m_index;
}
bool
operator== (const iterator &rhs) const
{
return m_index == rhs.m_index;
}
iterator&
operator++ (void) &
{
++m_index;
return *this;
};
const value_type&
operator* (void) const&
{
return m_index;
}
private:
value_type m_index;
};
iterator begin (void) const { return iterator { value_type {0} }; }
iterator end (void) const { return iterator { value_type (m_container.size ()) }; }
private:
const ContainerT &m_container;
};
//-------------------------------------------------------------------------
template <typename T>
indices<T>
make_indices (const T &_t)
{
return indices<T> (_t);
}
///////////////////////////////////////////////////////////////////////////
namespace detail::zip {
template <
typename IteratorT,
typename = std::make_index_sequence<std::tuple_size_v<IteratorT>>
>
struct iterator;
template <typename IteratorT, std::size_t ...Indices>
struct iterator<IteratorT, std::index_sequence<Indices...>> {
public:
// we cannot be a forward iterator because we don't want to supply
// references to a value type as that would necessitate storing
// said value types within the iterator.
using iterator_category = std::input_iterator_tag;
using difference_type = std::ptrdiff_t;
iterator (IteratorT _iterators):
m_iterators (_iterators)
{ ; }
iterator&
operator++ (void)
{
std::tuple (++std::get<Indices> (m_iterators)...);
return *this;
}
iterator operator++ (int);
auto
operator* (void)
{
return std::forward_as_tuple (*std::get<Indices> (m_iterators)...);
}
bool
operator== (const iterator &rhs) const
{
return m_iterators == rhs.m_iterators;
}
bool
operator!= (const iterator &rhs) const
{
return !(*this == rhs);
}
private:
IteratorT m_iterators;
};
// holds a tuple of iterators for begin and end, and returns an
// iterator that transforms these iterators into tuples of value_types.
//
// this must be expressed in terms of iterators, rather than containers,
// because it dramatically simplifies iterating over raw arrays.
//
// we have to store begin and end iterators because we might not have
// enough information to determine the correct types from StoreT;
// eg, in the case of arrays that have decayed to pointers we can't
// find the end.
//
// BeginT: a tuple of begin iterators across all containers
//
// EndT: a tuple of end iterators across all containers
//
// StoreT: a tuple of containers we might own. used when we were
// provided with an rval at zip time. allows us to destroy the
// data when we're actually done iterating.
template <
typename StoreT,
typename BeginT,
typename EndT,
typename I = std::make_index_sequence<std::tuple_size_v<StoreT>>
>
class collection;
//---------------------------------------------------------------------
template <
typename StoreT,
typename BeginT,
typename EndT,
std::size_t ...I
>
class collection<
StoreT,
BeginT,
EndT,
std::index_sequence<I...>
> {
public:
collection (StoreT _store, BeginT _begin, EndT _end):
m_store { std::move (_store) },
m_begin (std::move (_begin)),
m_end (std::move (_end))
{ ; }
auto begin (void)& { return iterator<BeginT> { m_begin }; }
auto end (void)& { return iterator<EndT> { m_end }; }
private:
StoreT m_store;
BeginT m_begin;
EndT m_end;
};
}
///------------------------------------------------------------------------
/// takes a variable number of container arguments and returns an interable
/// object with a value_type of tuple of the argument's value_types.
///
/// the returned iterator value_type is suitable for using in range-for
/// and structured bindings (and really, that's the entire point here).
///
/// eg, util::zip ({1,2,3}, {4,5,6}) ~= {{1,4},{2,5},{3,6}}
template <typename ...ContainerT>
auto
zip (ContainerT&&... data)
{
return detail::zip::collection<
decltype (std::forward_as_tuple (data...)),
decltype (std::make_tuple (std::begin (data)...)),
decltype (std::make_tuple (std::end (data)...)),
std::make_index_sequence<sizeof...(ContainerT)>
> (
std::forward_as_tuple (data...),
std::make_tuple (std::begin (data)...),
std::make_tuple (std::end (data)...)
);
};
///------------------------------------------------------------------------
/// takes a variable number of containers and returns a zipped iterable
/// object where the first of the iterator's value_types is the index of
/// that iterator. ie, it combines container offsets with value_types.
///
/// eg, util::izip ("abc") ~= {{0,'a'},{1,'b'},{2,'c'}}
template <typename ...ContainerT>
auto
izip (ContainerT&&... data)
{
return zip (
::util::make_indices (::util::variadic::get<0> (data...)),
std::forward<ContainerT> (data)...
);
}
///////////////////////////////////////////////////////////////////////////
/// an output iterator that always discards any parameters on assignment.
///
/// sometimes useful to pass to algorithms that generate useful results as
/// a return value, while not caring about the implicit OutputIterator
/// results.
struct discard_iterator : public std::iterator<std::output_iterator_tag, discard_iterator> {
template <typename T>
void operator= (const T&) { ; }
discard_iterator& operator++ ( ) { return *this; }
discard_iterator operator++ (int) { return *this; }
discard_iterator& operator* ( ) { return *this; }
};
///////////////////////////////////////////////////////////////////////////
/// an iterator that can be infinitely incremented but never assigned.
///
/// useful for iterator ranges where the begin iterator is an output
/// iterator and hence never reaches an end point (and where we don't want
/// to engineer the client code to account for this).
template <
typename ValueT,
typename CategoryT,
typename DistanceT,
typename PointerT,
typename ReferenceT
>
struct unequal_iterator {
using value_type = ValueT;
using iterator_category = CategoryT;
using difference_type = DistanceT;
using pointer = PointerT;
using reference = ReferenceT;
unequal_iterator& operator++ ( ) { return *this; }
unequal_iterator operator++ (int) { return *this; }
};
//-------------------------------------------------------------------------
template <typename ContainerT>
auto
make_unequal_iterator (const ContainerT&)
{
using t = typename std::iterator_traits<typename ContainerT::iterator>;
return unequal_iterator<
typename t::value_type,
typename t::iterator_category,
typename t::difference_type,
typename t::pointer,
typename t::reference
> {};
};
//-------------------------------------------------------------------------
template <
typename OtherT,
typename ValueT,
typename CategoryT,
typename DistanceT,
typename PointerT,
typename ReferenceT>
constexpr bool
operator== (
const unequal_iterator<ValueT,CategoryT,DistanceT,PointerT,ReferenceT>&,
const OtherT&
) {
return false;
}
//-------------------------------------------------------------------------
template <
typename OtherT,
typename ValueT,
typename CategoryT,
typename DistanceT,
typename PointerT,
typename ReferenceT>
constexpr bool
operator== (
const OtherT&,
const unequal_iterator<ValueT,CategoryT,DistanceT,PointerT,ReferenceT>&
) {
return false;
}
///////////////////////////////////////////////////////////////////////////
template <typename OutputIt, typename FunctionT>
OutputIt
_transform_by_block (
const util::view<OutputIt> &,
OutputIt cursor,
FunctionT &&
) {
return cursor;
}
//-------------------------------------------------------------------------
template <typename OutputIt, typename FunctionT, typename InputT, typename ...TailT>
OutputIt
_transform_by_block (
const util::view<OutputIt> &dst,
OutputIt cursor,
FunctionT &&func,
const InputT &_src,
TailT &&...tail
) {
auto remain = _src;
if (cursor != dst.begin ()) {
auto infill = std::distance (cursor, dst.end ());
if (remain.size () < static_cast<size_t> (infill)) {
return _transform_by_block (
dst,
std::copy_n (remain.begin (), remain.size (), cursor),
std::forward<FunctionT> (func),
std::forward<TailT> (tail)...
);
}
std::copy_n (remain.begin (), infill, cursor);
func (dst);
cursor = dst.begin ();
remain = { remain.begin () + infill, remain.end () };
}
while (remain.size () >= dst.size ()) {
std::copy_n (remain.begin (), dst.size (), dst.begin ());
func (dst);
remain = { remain.begin () + dst.size (), remain.end () };
}
return _transform_by_block (
dst,
std::copy (remain.begin (), remain.end (), cursor),
std::forward<FunctionT> (func),
std::forward<TailT> (tail)...
);
}
//-------------------------------------------------------------------------
template <typename OutputIt, typename FunctionT, typename ...Args>
OutputIt
transform_by_block (const util::view<OutputIt> &dst, FunctionT &&func, Args &&...src)
{
return _transform_by_block (
dst,
dst.begin (),
std::forward<FunctionT> (func),
std::forward<Args> (src)...
);
}
};
#endif