Danny Robson
24a530e23e
pow2 has been used enough times to mean 2^x and x^2 that it's not worth the ambiguity. just use pow(b,e) directly.
158 lines
4.7 KiB
C++
158 lines
4.7 KiB
C++
/*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
|
|
#include "polynomial.hpp"
|
|
|
|
#include "maths.hpp"
|
|
|
|
#include <limits>
|
|
#include <cmath>
|
|
|
|
static const size_t NEWTON_ITERATIONS = 1u;
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util::polynomial {
|
|
template <>
|
|
std::array<float,1>
|
|
roots (std::array<float,2> coeff)
|
|
{
|
|
const float a = coeff[0];
|
|
const float b = coeff[1];
|
|
|
|
if (almost_zero (a))
|
|
return { std::numeric_limits<float>::quiet_NaN () };
|
|
|
|
return { -b / a };
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util::polynomial {
|
|
template <>
|
|
std::array<float,2>
|
|
roots (std::array<float,3> coeff)
|
|
{
|
|
const float a = coeff[0];
|
|
const float b = coeff[1];
|
|
const float c = coeff[2];
|
|
|
|
if (almost_zero (a)) {
|
|
auto s = roots<1> ({b, c});
|
|
return { s[0], std::numeric_limits<float>::quiet_NaN () };
|
|
}
|
|
|
|
auto descriminator = std::sqrt (pow (b,2) - 4 * a * c);
|
|
return {
|
|
(-b - descriminator) / (2 * a),
|
|
(-b + descriminator) / (2 * a)
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// From graphics gems: http://tog.acm.org/resources/GraphicsGems/gemsiv/vec_mat/ray/solver.c
|
|
namespace util::polynomial {
|
|
template <>
|
|
std::array<float,3>
|
|
roots (std::array<float,4> coeffs)
|
|
{
|
|
const float _a = coeffs[0];
|
|
const float _b = coeffs[1];
|
|
const float _c = coeffs[2];
|
|
const float _d = coeffs[3];
|
|
|
|
// Take care of degenerate quadratic cases. We can also pass off if 'd'
|
|
// is zero, but the benefit isn't clear given we have to merge results
|
|
// at the end anyway.
|
|
if (almost_zero (_a)) {
|
|
auto s = roots<2> ({_b, _c, _d});
|
|
return {s[0], s[1], std::numeric_limits<float>::quiet_NaN () };
|
|
}
|
|
|
|
std::array<float,3> s;
|
|
|
|
// Normalise to x^3 + ax^2 + bx + c = 0
|
|
const float a = _b / _a;
|
|
const float b = _c / _a;
|
|
const float c = _d / _a;
|
|
|
|
// Substituate x = y - a / 3 to eliminate the quadric. Now: x^3 + px + q = 0
|
|
const float p = (-a * a / 3.f + b) / 3.f;
|
|
const float q = (2 * a * a * a / 27.f - a * b /3.f + c) / 2.f;
|
|
|
|
// Polynomial descriminant
|
|
const float D = q * q + p * p * p;
|
|
|
|
// Solve using Cardano's method
|
|
if (almost_zero (D))
|
|
{
|
|
if (almost_zero (q)) {
|
|
s[0] = 0.f;
|
|
s[1] = std::numeric_limits<float>::quiet_NaN ();
|
|
s[2] = std::numeric_limits<float>::quiet_NaN ();
|
|
} else {
|
|
const float u = std::cbrt (-q);
|
|
s[0] = 2 * u;
|
|
s[1] = -u;
|
|
s[2] = std::numeric_limits<float>::quiet_NaN ();
|
|
}
|
|
} else if (D < 0) {
|
|
const float phi = std::acos (-q / std::sqrt (-p * p * p)) / 3.f;
|
|
const float t = 2 * std::sqrt (-p);
|
|
|
|
s[0] = t * std::cos (phi);
|
|
s[1] = -t * std::cos (phi + pi<float> / 3.f);
|
|
s[2] = -t * std::cos (phi - pi<float> / 3.f);
|
|
} else {
|
|
float u = std::cbrt (std::sqrt (D) + abs (q));
|
|
if (q > 0.f)
|
|
s[0] = -u + p / u;
|
|
else
|
|
s[0] = u - p / u;
|
|
|
|
s[1] = std::numeric_limits<float>::quiet_NaN ();
|
|
s[2] = std::numeric_limits<float>::quiet_NaN ();
|
|
}
|
|
|
|
// Resubstitute a / 3 from above
|
|
const float sub = a / 3.f;
|
|
for (auto &i: s)
|
|
i -= sub;
|
|
|
|
// Run some iterations of Newtons method to make the results slightly
|
|
// more accurate, they're a little loose straight out of the bat.
|
|
const float da = 3 * _a;
|
|
const float db = 2 * _b;
|
|
const float dc = 1 * _c;
|
|
|
|
for (auto &i: s) {
|
|
for (size_t j = 0; j < NEWTON_ITERATIONS; ++j) {
|
|
float deriv = da * i * i + db * i + dc;
|
|
if (almost_zero (deriv))
|
|
continue;
|
|
|
|
i = i - eval (coeffs, i) / deriv;
|
|
}
|
|
}
|
|
|
|
return s;
|
|
}
|
|
}
|