libcruft-util/matrix.cpp

603 lines
19 KiB
C++

/*
* This file is part of libgim.
*
* libgim is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2011-2014 Danny Robson <danny@nerdcruft.net>
*/
#include "matrix.hpp"
#include "point.hpp"
#include "debug.hpp"
#include <cstring>
#include <cmath>
using namespace util;
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::transposed (void) const
{
matrix<T> m;
for (size_t i = 0; i < 4; ++i)
for (size_t j = 0; j < 4; ++j)
m.values[i][j] = values[j][i];
return m;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::transpose (void)
{
for (size_t i = 0; i < 4; ++i)
for (size_t j = i + 1; j < 4; ++j)
std::swap (values[i][j], values[j][i]);
return *this;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::inverse (void) const {
matrix<T> m;
T d = det ();
if (almost_zero (d))
throw std::runtime_error ("non-singular matrix");
auto v = values;
m.values[0][0] = v[1][2] * v[2][3] * v[3][1] -
v[1][3] * v[2][2] * v[3][1] +
v[1][3] * v[2][1] * v[3][2] -
v[1][1] * v[2][3] * v[3][2] -
v[1][2] * v[2][1] * v[3][3] +
v[1][1] * v[2][2] * v[3][3];
m.values[0][1] = v[0][3] * v[2][2] * v[3][1] -
v[0][2] * v[2][3] * v[3][1] -
v[0][3] * v[2][1] * v[3][2] +
v[0][1] * v[2][3] * v[3][2] +
v[0][2] * v[2][1] * v[3][3] -
v[0][1] * v[2][2] * v[3][3];
m.values[0][2] = v[0][2] * v[1][3] * v[3][1] -
v[0][3] * v[1][2] * v[3][1] +
v[0][3] * v[1][1] * v[3][2] -
v[0][1] * v[1][3] * v[3][2] -
v[0][2] * v[1][1] * v[3][3] +
v[0][1] * v[1][2] * v[3][3];
m.values[0][3] = v[0][3] * v[1][2] * v[2][1] -
v[0][2] * v[1][3] * v[2][1] -
v[0][3] * v[1][1] * v[2][2] +
v[0][1] * v[1][3] * v[2][2] +
v[0][2] * v[1][1] * v[2][3] -
v[0][1] * v[1][2] * v[2][3];
m.values[1][0] = v[1][3] * v[2][2] * v[3][0] -
v[1][2] * v[2][3] * v[3][0] -
v[1][3] * v[2][0] * v[3][2] +
v[1][0] * v[2][3] * v[3][2] +
v[1][2] * v[2][0] * v[3][3] -
v[1][0] * v[2][2] * v[3][3];
m.values[1][1] = v[0][2] * v[2][3] * v[3][0] -
v[0][3] * v[2][2] * v[3][0] +
v[0][3] * v[2][0] * v[3][2] -
v[0][0] * v[2][3] * v[3][2] -
v[0][2] * v[2][0] * v[3][3] +
v[0][0] * v[2][2] * v[3][3];
m.values[1][2] = v[0][3] * v[1][2] * v[3][0] -
v[0][2] * v[1][3] * v[3][0] -
v[0][3] * v[1][0] * v[3][2] +
v[0][0] * v[1][3] * v[3][2] +
v[0][2] * v[1][0] * v[3][3] -
v[0][0] * v[1][2] * v[3][3];
m.values[1][3] = v[0][2] * v[1][3] * v[2][0] -
v[0][3] * v[1][2] * v[2][0] +
v[0][3] * v[1][0] * v[2][2] -
v[0][0] * v[1][3] * v[2][2] -
v[0][2] * v[1][0] * v[2][3] +
v[0][0] * v[1][2] * v[2][3];
m.values[2][0] = v[1][1] * v[2][3] * v[3][0] -
v[1][3] * v[2][1] * v[3][0] +
v[1][3] * v[2][0] * v[3][1] -
v[1][0] * v[2][3] * v[3][1] -
v[1][1] * v[2][0] * v[3][3] +
v[1][0] * v[2][1] * v[3][3];
m.values[2][1] = v[0][3] * v[2][1] * v[3][0] -
v[0][1] * v[2][3] * v[3][0] -
v[0][3] * v[2][0] * v[3][1] +
v[0][0] * v[2][3] * v[3][1] +
v[0][1] * v[2][0] * v[3][3] -
v[0][0] * v[2][1] * v[3][3];
m.values[2][2] = v[0][1] * v[1][3] * v[3][0] -
v[0][3] * v[1][1] * v[3][0] +
v[0][3] * v[1][0] * v[3][1] -
v[0][0] * v[1][3] * v[3][1] -
v[0][1] * v[1][0] * v[3][3] +
v[0][0] * v[1][1] * v[3][3];
m.values[2][3] = v[0][3] * v[1][1] * v[2][0] -
v[0][1] * v[1][3] * v[2][0] -
v[0][3] * v[1][0] * v[2][1] +
v[0][0] * v[1][3] * v[2][1] +
v[0][1] * v[1][0] * v[2][3] -
v[0][0] * v[1][1] * v[2][3];
m.values[3][0] = v[1][2] * v[2][1] * v[3][0] -
v[1][1] * v[2][2] * v[3][0] -
v[1][2] * v[2][0] * v[3][1] +
v[1][0] * v[2][2] * v[3][1] +
v[1][1] * v[2][0] * v[3][2] -
v[1][0] * v[2][1] * v[3][2];
m.values[3][1] = v[0][1] * v[2][2] * v[3][0] -
v[0][2] * v[2][1] * v[3][0] +
v[0][2] * v[2][0] * v[3][1] -
v[0][0] * v[2][2] * v[3][1] -
v[0][1] * v[2][0] * v[3][2] +
v[0][0] * v[2][1] * v[3][2];
m.values[3][2] = v[0][2] * v[1][1] * v[3][0] -
v[0][1] * v[1][2] * v[3][0] -
v[0][2] * v[1][0] * v[3][1] +
v[0][0] * v[1][2] * v[3][1] +
v[0][1] * v[1][0] * v[3][2] -
v[0][0] * v[1][1] * v[3][2];
m.values[3][3] = v[0][1] * v[1][2] * v[2][0] -
v[0][2] * v[1][1] * v[2][0] +
v[0][2] * v[1][0] * v[2][1] -
v[0][0] * v[1][2] * v[2][1] -
v[0][1] * v[1][0] * v[2][2] +
v[0][0] * v[1][1] * v[2][2];
m /= d;
return m;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::invert (void) {
auto m = *this;
m.invert ();
*this = m;
return *this;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::inverse_affine (void) const {
return matrix<T>(*this).invert_affine ();
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::invert_affine (void) {
CHECK_HARD (is_affine ());
// inv ([ M b ] == [ inv(M) -inv(M).b ]
// [ 0 1 ]) [ 0 1 ]
// Invert the 3x3 M
T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
T d = values[0][0] * A + values[0][1] * B + values[0][2] * C;
CHECK_NEQ (d, 0.0);
values[0][0] = A / d;
values[0][1] = D / d;
values[0][2] = G / d;
values[1][0] = B / d;
values[1][1] = E / d;
values[1][2] = H / d;
values[2][0] = C / d;
values[2][1] = F / d;
values[2][2] = K / d;
// Multiply the b
T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
values[0][3] = b0;
values[1][3] = b1;
values[2][3] = b2;
return *this;
}
//-----------------------------------------------------------------------------
template <typename T>
T
matrix<T>::det (void) const {
return values[0][3] * values[1][2] * values[2][1] * values[3][0] -
values[0][2] * values[1][3] * values[2][1] * values[3][0] -
values[0][3] * values[1][1] * values[2][2] * values[3][0] +
values[0][1] * values[1][3] * values[2][2] * values[3][0] +
values[0][2] * values[1][1] * values[2][3] * values[3][0] -
values[0][1] * values[1][2] * values[2][3] * values[3][0] -
values[0][3] * values[1][2] * values[2][0] * values[3][1] +
values[0][2] * values[1][3] * values[2][0] * values[3][1] +
values[0][3] * values[1][0] * values[2][2] * values[3][1] -
values[0][0] * values[1][3] * values[2][2] * values[3][1] -
values[0][2] * values[1][0] * values[2][3] * values[3][1] +
values[0][0] * values[1][2] * values[2][3] * values[3][1] +
values[0][3] * values[1][1] * values[2][0] * values[3][2] -
values[0][1] * values[1][3] * values[2][0] * values[3][2] -
values[0][3] * values[1][0] * values[2][1] * values[3][2] +
values[0][0] * values[1][3] * values[2][1] * values[3][2] +
values[0][1] * values[1][0] * values[2][3] * values[3][2] -
values[0][0] * values[1][1] * values[2][3] * values[3][2] -
values[0][2] * values[1][1] * values[2][0] * values[3][3] +
values[0][1] * values[1][2] * values[2][0] * values[3][3] +
values[0][2] * values[1][0] * values[2][1] * values[3][3] -
values[0][0] * values[1][2] * values[2][1] * values[3][3] -
values[0][1] * values[1][0] * values[2][2] * values[3][3] +
values[0][0] * values[1][1] * values[2][2] * values[3][3];
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::operator* (const matrix<T> &rhs) const {
matrix<T> m;
for (unsigned row = 0; row < 4; ++row) {
for (unsigned col = 0; col < 4; ++col) {
m.values[row][col] = T {0};
for (unsigned inner = 0; inner < 4; ++inner)
m.values[row][col] += values[row][inner] * rhs.values[inner][col];
}
}
return m;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::operator*=(const matrix<T> &rhs) {
return *this = *this * rhs;
}
//-----------------------------------------------------------------------------
template <typename T>
vector<4,T>
matrix<T>::operator* (const vector<4,T> &rhs) const {
return vector<4,T> {
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w,
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
};
}
//-----------------------------------------------------------------------------
template <typename T>
point<4,T>
matrix<T>::operator* (const point<4,T> &rhs) const
{
return point<4,T> {
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w,
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
};
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::operator*= (T f){
for (size_t i = 0; i < 4; ++i)
for (size_t j = 0; j < 4; ++j)
values[i][j] *= f;
return *this;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::operator/ (T s) const {
matrix<T> m;
for (size_t r = 0; r < m.rows; ++r)
for (size_t c = 0; c < m.cols; ++c)
m.values[r][c] = values[r][c] / s;
return m;
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::operator/= (T s) {
for (size_t r = 0; r < rows; ++r)
for (size_t c = 0; c < cols; ++c)
values[r][c] /= s;
return *this;
}
//-----------------------------------------------------------------------------
template <typename T>
bool
matrix<T>::operator== (const matrix<T> &rhs) const {
for (size_t r = 0; r < rows; ++r)
for (size_t c = 0; c < cols; ++c)
if (!almost_equal (rhs.values[r][c], values[r][c]))
return false;
return true;
}
//-----------------------------------------------------------------------------
template <typename T>
bool
matrix<T>::is_affine (void) const {
return exactly_equal (values[3][0], T {0}) &&
exactly_equal (values[3][1], T {0}) &&
exactly_equal (values[3][2], T {0}) &&
exactly_equal (values[3][3], T {1});
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::ortho (T left, T right,
T bottom, T top,
T near, T far)
{
CHECK_GT (far, near);
T tx = - (right + left) / (right - left);
T ty = - (top + bottom) / (top - bottom);
T tz = - (far + near) / (far - near);
T rl = 2 / (right - left);
T tb = 2 / (top - bottom);
T fn = 2 / (far - near);
return { {
{ rl, 0, 0, tx },
{ 0, tb, 0, ty },
{ 0, 0, fn, tz },
{ 0, 0, 0, 1 },
} };
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::ortho2D (T left, T right,
T bottom, T top)
{
return ortho (left, right, bottom, top, -1, 1);
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::perspective (T fov, T aspect, T near, T far)
{
T f = std::tan (fov / 2);
T tx = 1 / (f * aspect);
T ty = 1 / f;
T z1 = (far + near) / (near - far);
T z2 = (2 * far * near) / (near - far);
return { {
{ tx, 0, 0, 0 },
{ 0, ty, 0, 0 },
{ 0, 0, z1, z2 },
{ 0, 0, -1, 0 }
} };
}
//-----------------------------------------------------------------------------
// Emulates gluLookAt
template <typename T>
matrix<T>
matrix<T>::look_at (util::point<3,T> eye,
util::point<3,T> centre,
util::vector<3,T> up)
{
const auto f = eye.to (centre).normalise ();
const auto s = cross (f, up).normalise ();
const auto u = cross (s, f);
return { {
{ s.x, s.y, s.z, -dot (s, eye) },
{ u.x, u.y, u.z, -dot (u, eye) },
{ -f.x, -f.y, -f.z, dot (f, eye) },
{ 0, 0, 0, 1 },
} };
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::translate (util::vector<3,T> v)
{
return { {
{ 1.f, 0.f, 0.f, v.x },
{ 0.f, 1.f, 0.f, v.y },
{ 0.f, 0.f, 1.f, v.z },
{ 0.f, 0.f, 0.f, 1.f },
} };
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::scale (T mag)
{
return scale (vector<3,T> (mag));
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::scale (util::vector<3,T> v)
{
return { {
{ v.x, 0.f, 0.f, 0.f },
{ 0.f, v.y, 0.f, 0.f },
{ 0.f, 0.f, v.z, 0.f },
{ 0.f, 0.f, 0.f, 1.f }
} };
}
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::rotate (T angle, util::vector<3,T> about)
{
about.normalise ();
T c = std::cos (angle);
T s = std::sin (angle);
T x = about.x,
y = about.y,
z = about.z;
return { {
{ x * x * (1 - c) + c,
x * y * (1 - c) - z * s,
x * z * (1 - c) + y * s,
0
},
{ y * x * (1 - c) + z * s,
y * y * (1 - c) + c,
y * z * (1 - c) - x * s,
0
},
{ z * x * (1 - c) - y * s,
z * y * (1 - c) + x * s,
z * z * (1 - c) + c,
0
},
{ 0, 0, 0, 1 }
} };
}
//-----------------------------------------------------------------------------
template <typename T>
const matrix<T>
matrix<T>::IDENTITY = { { { 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 } } };
template <typename T>
const matrix<T>
matrix<T>::ZEROES = { { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } } };
//-----------------------------------------------------------------------------
namespace util {
template struct matrix<float>;
template struct matrix<double>;
}
//-----------------------------------------------------------------------------
namespace util {
template <typename T>
std::ostream&
operator<< (std::ostream &os, const matrix<T> &m) {
os << "{ {" << m.values[0][0] << ", "
<< m.values[0][1] << ", "
<< m.values[0][2] << ", "
<< m.values[0][3] << "}, "
<< "{" << m.values[1][0] << ", "
<< m.values[1][1] << ", "
<< m.values[1][2] << ", "
<< m.values[1][3] << "}, "
<< "{" << m.values[2][0] << ", "
<< m.values[2][1] << ", "
<< m.values[2][2] << ", "
<< m.values[2][3] << "}, "
<< "{" << m.values[3][0] << ", "
<< m.values[3][1] << ", "
<< m.values[3][2] << ", "
<< m.values[3][3] << "} }";
return os;
}
}
template std::ostream& util::operator<< (std::ostream&, const matrix<float>&);
template std::ostream& util::operator<< (std::ostream&, const matrix<double>&);