413 lines
11 KiB
C++
413 lines
11 KiB
C++
/*
|
|
* This file is part of libgim.
|
|
*
|
|
* libgim is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "bezier.hpp"
|
|
|
|
#include "debug.hpp"
|
|
#include "polynomial.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// HACK: point multiplication isn't defined, but it's way more convenient than
|
|
// casting between vector/coord
|
|
namespace util {
|
|
template <typename T>
|
|
util::point2f
|
|
operator* (T a, util::point2f b)
|
|
{
|
|
return {
|
|
a * b.data[0],
|
|
a * b.data[1]
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S>
|
|
util::bezier<S>::bezier (const util::point2f (&_points)[S+1])
|
|
{
|
|
std::copy (_points, _points + S + 1, m_points);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
point2f
|
|
bezier<1>::eval (float t) const
|
|
{
|
|
CHECK_GE (t, 0);
|
|
CHECK_LE (t, 1);
|
|
|
|
auto v0 = (1 - t) * m_points[0];
|
|
auto v1 = t * m_points[1];
|
|
|
|
return {
|
|
v0.x + v1.x,
|
|
v0.y + v1.y
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
point2f
|
|
bezier<2>::eval (float t) const
|
|
{
|
|
CHECK_GE (t, 0);
|
|
CHECK_LE (t, 1);
|
|
|
|
auto v0 = pow2 (1 - t) * m_points[0];
|
|
auto v1 = 2 * (1 - t) * t * m_points[1];
|
|
auto v2 = pow2 (t) * m_points[2];
|
|
|
|
return {
|
|
v0.x + v1.x + v2.x,
|
|
v0.y + v1.y + v2.y
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
point2f
|
|
bezier<3>::eval (float t) const
|
|
{
|
|
CHECK_GE (t, 0);
|
|
CHECK_LE (t, 1);
|
|
|
|
auto v0 = pow (1 - t, 3) * m_points[0];
|
|
auto v1 = 3 * pow2 (1 - t) * t * m_points[1];
|
|
auto v2 = 3 * pow2 (1 - t) * t * m_points[2];
|
|
auto v3 = pow (t, 3) * m_points[3];
|
|
|
|
return {
|
|
v0.x + v1.x + v2.x + v3.x,
|
|
v0.y + v1.y + v2.y + v3.y
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
float
|
|
bezier<1>::distance (util::point2f target) const
|
|
{
|
|
auto v = m_points[1] - m_points[0];
|
|
auto w = target - m_points[0];
|
|
|
|
auto c1 = dot (w, v);
|
|
if (c1 <= 0)
|
|
return m_points[0].distance (target);
|
|
|
|
auto c2 = dot (v, v);
|
|
if (c2 <= c1)
|
|
return m_points[1].distance (target);
|
|
|
|
auto b = c1 / c2;
|
|
auto p = m_points[0] + b * v;
|
|
|
|
return p.distance (target);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
std::array<util::vector2f,4>
|
|
bezier<3>::coeffs (void) const
|
|
{
|
|
auto &v = reinterpret_cast<const util::vector2f(&)[4]> (m_points);
|
|
|
|
return {
|
|
-1 * v[0] +3 * v[1] -3 * v[2] +1 * v[3],
|
|
3 * v[0] -6 * v[1] +3 * v[2],
|
|
-3 * v[0] +3 * v[1],
|
|
1 * v[0]
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
std::array<util::vector2f,3>
|
|
bezier<2>::coeffs (void) const
|
|
{
|
|
auto &v = reinterpret_cast<const util::vector2f(&)[3]> (m_points);
|
|
|
|
return {
|
|
+1 * v[2] -2 * v[1] + 1 * v[0],
|
|
-2 * v[2] +2 * v[1],
|
|
+1 * v[2]
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
std::array<util::vector2f,2>
|
|
bezier<1>::coeffs (void) const
|
|
{
|
|
auto &v = reinterpret_cast<const util::vector2f(&)[2]> (m_points);
|
|
|
|
return {
|
|
-1 * v[1] + 1 * v[0],
|
|
+1 * v[1],
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// XXX: If the line is co-linear we'll have no solutions. But we return 1
|
|
// anyway as this function is used to find any point that intersects as part
|
|
// of other more comprehensive tests.
|
|
template <size_t S>
|
|
size_t
|
|
util::bezier<S>::intersections (point2f p0, point2f p1) const
|
|
{
|
|
float A = p1.y - p0.y; // A = y2 - y1
|
|
float B = p0.x - p1.x; // B = x1 - x2
|
|
float C = p0.x * (p0.y - p1.y) + // C = x1 (y1 - y2) + y1 (x2 - x1)
|
|
p0.y * (p1.x - p0.x);
|
|
|
|
// Build the intersection polynomial
|
|
const std::array<vector2f,S+1> bcoeff = coeffs ();
|
|
|
|
std::array<float,S+1> pcoeff;
|
|
for (size_t i = 0; i < pcoeff.size (); ++i)
|
|
pcoeff[i] = A * bcoeff[i].x + B * bcoeff[i].y;
|
|
pcoeff.back () += C;
|
|
|
|
const auto r = polynomial::solve<S> (pcoeff);
|
|
|
|
// The curve and line are colinear
|
|
if (std::all_of (r.begin (), r.end (), [] (auto i) { return std::isnan (i); }))
|
|
return 1;
|
|
|
|
size_t count = 0;
|
|
for (size_t i = 0; i < S; ++i) {
|
|
// Ensure the solutions are on the curve
|
|
const auto t = r[i];
|
|
if (std::isnan (t))
|
|
break;
|
|
|
|
if (t < 0.f || t > 1.f)
|
|
continue;
|
|
|
|
// Find the line's intersection point
|
|
const util::vector2f q = polynomial::eval (bcoeff, t);
|
|
|
|
const auto s = almost_equal (p0.x, p1.x) ?
|
|
(q.y-p0.y) / (p1.y-p0.y) :
|
|
(q.x-p0.x) / (p1.x-p0.x) ; // vertical
|
|
|
|
// Check if the point is on the line
|
|
if (s >= 0.f && s <= 1.f)
|
|
++count;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
// TODO: use a more reliable method like [Xiao-Dia Chen 2010]
|
|
template <>
|
|
float
|
|
bezier<2>::distance (util::point2f target) const
|
|
{
|
|
// Using procedure from: http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
|
auto p0 = m_points[0];
|
|
auto p1 = m_points[1];
|
|
auto p2 = m_points[2];
|
|
|
|
// Parametric form: P(t) = (1-t)^2*P0 + 2t(1-t)P1 + t^2*P2
|
|
//
|
|
// Derivative: dP/dt = -2(1-t)P0 + 2(1-2t)P1 + 2tP2
|
|
// = 2(A+Bt), A=(P1-P0), B=(P2-P1-A)
|
|
//
|
|
auto A = p1 - p0;
|
|
auto B = p2 - p1 - A;
|
|
|
|
// Make: dot(target, dP/dt) == 0
|
|
// dot (M - P(t), A+Bt) == 0
|
|
//
|
|
// Solve: at^3 + bt^2 + ct + d,
|
|
// a = B^2,
|
|
// b = 3A.B,
|
|
// c = 2A^2+M'.B,
|
|
// d = M'.A,
|
|
// M' = P0-M
|
|
|
|
const auto M = target;
|
|
const auto M_ = p0 - M;
|
|
|
|
//float a = dot (B, B);
|
|
//float b = 3.f * dot (A, B);
|
|
//float c = 2.f * dot (A, A) + dot (M_, B);
|
|
//float d = dot (M_, A);
|
|
|
|
const util::vector2f p102 = {
|
|
2 * p1.x - p0.x - p2.x,
|
|
2 * p1.y - p0.y - p2.y
|
|
};
|
|
|
|
const float a = dot (B, 2.f * p102);
|
|
const float b = dot (B, 4.f * (p0 - p1)) + dot (A, 2.f * p102);
|
|
const float c = dot (B, 2.f * (M - p0)) + dot (A, 4.f * (p0 - p1));
|
|
const float d = dot (A, 2.f * (M - p0));
|
|
|
|
auto solutions = util::polynomial::solve<3> ({a, b, c, d});
|
|
|
|
float dist = std::numeric_limits<float>::infinity ();
|
|
|
|
for (auto t: solutions) {
|
|
if (std::isnan (t))
|
|
continue;
|
|
|
|
if (t <= 0)
|
|
dist = min (dist, p0.distance (target));
|
|
else if (t > 1)
|
|
dist = min (p2.distance (target));
|
|
else {
|
|
auto p = eval (t);
|
|
dist = min (dist, p.distance (target));
|
|
}
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
float refine_cubic (util::bezier<3> b,
|
|
util::point2f target,
|
|
float t,
|
|
float d,
|
|
float p)
|
|
{
|
|
// TODO: use an iteration of newton before handing back
|
|
if (p < 0.00001) {
|
|
return t;
|
|
}
|
|
|
|
float t_l = std::max (0.f, t - p);
|
|
float t_r = std::min (1.f, t + p);
|
|
|
|
util::point2f p_l = b.eval (t_l);
|
|
util::point2f p_r = b.eval (t_r);
|
|
|
|
float d_l = p_l.distance (target);
|
|
float d_r = p_r.distance (target);
|
|
|
|
if (d_l < d) { return refine_cubic (b, target, t_l, d_l, p); }
|
|
if (d_r < d) { return refine_cubic (b, target, t_r, d_r, p); }
|
|
|
|
return refine_cubic (b, target, t, d, p / 2);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
float
|
|
bezier<3>::distance (util::point2f target) const
|
|
{
|
|
static constexpr size_t SUBDIV = 32;
|
|
std::array<util::point2f, SUBDIV> lookup;
|
|
|
|
for (size_t i = 0; i < SUBDIV; ++i)
|
|
lookup[i] = eval (i / float (SUBDIV - 1));
|
|
|
|
size_t best = 0;
|
|
for (size_t i = 1; i < lookup.size (); ++i)
|
|
if (lookup[i].distance2 (target) < lookup[best].distance2 (target))
|
|
best = i;
|
|
|
|
return refine_cubic (*this,
|
|
target,
|
|
best / float (SUBDIV - 1),
|
|
lookup[best].distance (target),
|
|
1.f / SUBDIV);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S>
|
|
util::point2f&
|
|
util::bezier<S>::operator[] (size_t idx)
|
|
{
|
|
CHECK_LE (idx, S);
|
|
|
|
return m_points[idx];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S>
|
|
const util::point2f&
|
|
util::bezier<S>::operator[] (size_t idx) const
|
|
{
|
|
CHECK_LE (idx, S);
|
|
|
|
return m_points[idx];
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S>
|
|
std::ostream&
|
|
util::operator<< (std::ostream &os, const bezier<S> &b)
|
|
{
|
|
os << b[0];
|
|
for (size_t i = 1; i < S+1; ++i)
|
|
os << ", " << b[i];
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
#define INSTANTIATE(S) \
|
|
template class util::bezier<S>; \
|
|
template std::ostream& util::operator<< (std::ostream&, const bezier<S>&);
|
|
|
|
INSTANTIATE(1)
|
|
INSTANTIATE(2)
|
|
INSTANTIATE(3)
|