250 lines
7.1 KiB
C++
250 lines
7.1 KiB
C++
/*
|
|
* This file is part of libgim.
|
|
*
|
|
* libgim is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Copyright 2013 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "sha1.hpp"
|
|
|
|
#include "bitwise.hpp"
|
|
#include "debug.hpp"
|
|
#include "endian.hpp"
|
|
#include "types.hpp"
|
|
#include "types/casts.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
|
|
|
|
using util::hash::SHA1;
|
|
using std::numeric_limits;
|
|
using std::begin;
|
|
using std::end;
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
std::ostream&
|
|
operator<< (std::ostream &os, SHA1::state_t t) {
|
|
switch (t) {
|
|
case SHA1::READY: os << "READY"; return os;
|
|
case SHA1::FINISHED: os << "FINISHED"; return os;
|
|
default:
|
|
unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Logical function for sequence of rounds
|
|
static inline uint32_t
|
|
f_00 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return (B & C) | (~B & D); }
|
|
|
|
|
|
static inline uint32_t
|
|
f_20 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return B ^ C ^ D; }
|
|
|
|
|
|
static inline uint32_t
|
|
f_40 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return (B & C) | (B & D) | (C & D); }
|
|
|
|
|
|
static inline uint32_t
|
|
f_60 (uint32_t B, uint32_t C, uint32_t D)
|
|
{ return B ^ C ^ D; }
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Constant words for sequence of rounds
|
|
static const uint32_t K_00 = 0x5A827999;
|
|
static const uint32_t K_20 = 0x6ED9EBA1;
|
|
static const uint32_t K_40 = 0x8F1BBCDC;
|
|
static const uint32_t K_60 = 0xCA62C1D6;
|
|
|
|
|
|
static const uint32_t DEFAULT_H[] = {
|
|
0x67452301,
|
|
0xEFCDAB89,
|
|
0x98BADCFE,
|
|
0x10325476,
|
|
0xC3D2E1F0
|
|
};
|
|
|
|
static const size_t BLOCK_WORDS = 16;
|
|
static const size_t BLOCK_BYTES = BLOCK_WORDS * sizeof (uint32_t);
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
SHA1::SHA1()
|
|
{
|
|
reset ();
|
|
}
|
|
|
|
|
|
void
|
|
SHA1::reset (void) {
|
|
total = 0;
|
|
state = READY;
|
|
|
|
std::copy (std::begin (DEFAULT_H), std::end (DEFAULT_H), H);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
void
|
|
SHA1::update (const uint8_t *data, size_t size) {
|
|
CHECK_EQ (state, READY);
|
|
CHECK_GE (numeric_limits<decltype(total)>::max () - total, size);
|
|
|
|
while (size > 0) {
|
|
// Copy the data into the remaining available buffer slots
|
|
const size_t offset = total % BLOCK_BYTES;
|
|
const size_t chunk = std::min (BLOCK_BYTES - offset, size);
|
|
|
|
std::copy (data, data + chunk, c + offset);
|
|
|
|
total += chunk;
|
|
|
|
// Attempt to process if full
|
|
if (total % BLOCK_BYTES == 0)
|
|
process ();
|
|
|
|
size -= chunk;
|
|
data += chunk;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
void
|
|
SHA1::process (void) {
|
|
CHECK_EQ (total % BLOCK_BYTES, 0);
|
|
|
|
// Byteswap the raw input we have buffered ready for arithmetic
|
|
std::transform (std::begin (W),
|
|
std::end (W),
|
|
std::begin (W),
|
|
[] (uint32_t x) {
|
|
return ntoh (x);
|
|
});
|
|
|
|
// Initialise the work buffer and the state variables
|
|
for (size_t t = 16; t < 80; ++t)
|
|
W[t] = rotatel (W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
|
|
|
|
uint32_t A = H[0],
|
|
B = H[1],
|
|
C = H[2],
|
|
D = H[3],
|
|
E = H[4];
|
|
|
|
// Perform each of the four rounds
|
|
#define ROTATE_STATE(i) do { \
|
|
uint32_t temp = rotatel (A, 5) + f_##i (B, C, D) + E + W[t] + K_##i; \
|
|
E = D; \
|
|
D = C; \
|
|
C = rotatel (B, 30); \
|
|
B = A; \
|
|
A = temp; \
|
|
} while (0)
|
|
|
|
for (size_t t = 0; t < 20; ++t) ROTATE_STATE(00);
|
|
for (size_t t = 20; t < 40; ++t) ROTATE_STATE(20);
|
|
for (size_t t = 40; t < 60; ++t) ROTATE_STATE(40);
|
|
for (size_t t = 60; t < 80; ++t) ROTATE_STATE(60);
|
|
|
|
// Update the resulting hash state
|
|
H[0] += A;
|
|
H[1] += B;
|
|
H[2] += C;
|
|
H[3] += D;
|
|
H[4] += E;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
void
|
|
SHA1::finish (void) {
|
|
size_t offset = total % BLOCK_BYTES;
|
|
size_t used = total * 8;
|
|
|
|
// Append a single one bit
|
|
c[offset++] = 0x80;
|
|
total += 1;
|
|
|
|
// Zero fill if we can't append length
|
|
size_t chunk = BLOCK_BYTES - offset;
|
|
if (chunk < sizeof (total)) {
|
|
std::fill_n (c + offset, chunk, 0);
|
|
total += chunk;
|
|
|
|
process ();
|
|
|
|
chunk = BLOCK_BYTES;
|
|
offset = 0;
|
|
}
|
|
|
|
// Zero fill and append total length
|
|
std::fill_n (c + offset, chunk - sizeof (total), 0);
|
|
c[BLOCK_BYTES - 1] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 2] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 3] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 4] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 5] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 6] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 7] = used & 0xFF; used >>= 8;
|
|
c[BLOCK_BYTES - 8] = used & 0xFF;
|
|
|
|
total += chunk;
|
|
process ();
|
|
|
|
state = FINISHED;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
SHA1::digest_t
|
|
SHA1::digest (void) const {
|
|
CHECK_EQ (state, FINISHED);
|
|
|
|
return { {
|
|
trunc_cast<uint8_t> ((H[0] >> 24u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[0] >> 16u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[0] >> 8u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[0] ) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[1] >> 24u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[1] >> 16u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[1] >> 8u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[1] ) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[2] >> 24u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[2] >> 16u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[2] >> 8u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[2] ) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[3] >> 24u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[3] >> 16u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[3] >> 8u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[3] ) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[4] >> 24u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[4] >> 16u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[4] >> 8u) & 0xFF),
|
|
trunc_cast<uint8_t> ((H[4] ) & 0xFF)
|
|
} };
|
|
}
|