libcruft-util/quaternion.cpp
Danny Robson 34788756d2 build: don't use './' as an include prefix
GCC produces ODR error when including paths of the form './foo' and
'foo' in the same binary. Rather than managing duplication we just
universally pick the absolute form over the relative form.
2017-11-22 16:49:37 +11:00

286 lines
8.4 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2011-2016 Danny Robson <danny@nerdcruft.net>
*/
#include "quaternion.hpp"
#include "debug.hpp"
#include "vector.hpp"
#include <cmath>
///////////////////////////////////////////////////////////////////////////////
using util::quaternion;
///////////////////////////////////////////////////////////////////////////////
template <typename T>
quaternion<T>
quaternion<T>::angle_axis (const T radians, const vector<3,T> axis)
{
CHECK (is_normalised (axis));
auto w = std::cos (radians / 2);
auto xyz = std::sin (radians / 2) * axis;
return {
w, xyz.x, xyz.y, xyz.z
};
}
//-----------------------------------------------------------------------------
template <typename T>
quaternion<T>
quaternion<T>::from_euler (vector<3,T> angles)
{
auto half = angles / 2;
auto c = cos (half);
auto s = sin (half);
return {
c.x * c.y * c.z - s.x * s.y * s.z,
s.x * c.y * c.z + c.x * s.y * s.z,
c.x * s.y * c.z - s.x * c.y * s.z,
c.x * c.y * s.z + s.x * s.y * c.z,
};
}
///////////////////////////////////////////////////////////////////////////////
// vector-to-vector rotation algorithm from:
// http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final
template <typename T>
quaternion<T>
quaternion<T>::from_to (const vector<3,T> u, const vector<3,T> v)
{
CHECK (is_normalised (u));
CHECK (is_normalised (v));
#if 0
// Naive:
auto cos_theta = dot (u, v);
auto angle = std::acos (cos_theta);
auto axis = normalised (cross (u, v));
return angle_axis (angle, axis);
#elif 1
auto norm_u_norm_v = std::sqrt(dot(u, u) * dot(v, v));
auto real_part = norm_u_norm_v + dot(u, v);
util::vector<3,T> w;
if (real_part < 1.e-6f * norm_u_norm_v)
{
/* If u and v are exactly opposite, rotate 180 degrees
* around an arbitrary orthogonal axis. Axis normalisation
* can happen later, when we normalise the quaternion. */
real_part = 0.0f;
w = std::abs(u.x) > std::abs(u.z) ?
util::vector3<T> (-u.y, u.x, 0.f) :
util::vector3<T> (0.f, -u.z, u.y);
}
else
{
/* Otherwise, build quaternion the standard way. */
w = cross(u, v);
}
return normalised (util::quaternion<T> {real_part, w.x, w.y, w.z});
#endif
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
quaternion<T>
util::conjugate (quaternion<T> q)
{
return { q.w, -q.x, -q.y, -q.z };
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
quaternion<T>
util::operator* (const quaternion<T> a, const quaternion<T> b)
{
return {
a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z,
a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x,
a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w,
};
}
//-----------------------------------------------------------------------------
template <typename T>
quaternion<T>&
util::operator*= (quaternion<T> &a, const quaternion<T> b)
{
return a = a * b;
}
//-----------------------------------------------------------------------------
template <typename T>
quaternion<T>
util::operator/ (const quaternion<T> a, const quaternion<T> b)
{
CHECK (is_normalised (a));
CHECK (is_normalised (b));
return quaternion<T> {
a.w * b.w + a.x * b.x + a.y * b.y + a.z * b.z,
- a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
- a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x,
- a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w,
};
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
util::matrix4<T>
quaternion<T>::as_matrix (void) const
{
CHECK (is_normalised (*this));
const T wx = this->w * this->x, wy = this->w * this->y, wz = this->w * this->z;
const T xx = this->x * this->x, xy = this->x * this->y, xz = this->x * this->z;
const T yy = this->y * this->y, yz = this->y * this->z, zz = this->z * this->z;
return { {
{ 1 - 2 * (yy + zz), 2 * (xy - wz), 2 * (xz + wy), 0 },
{ 2 * (xy + wz), 1 - 2 * (xx + zz), 2 * (yz - wx), 0 },
{ 2 * (xz - wy), 2 * (yz + wx), 1 - 2 * (xx + yy), 0 },
{ 0, 0, 0, 1 }
} };
}
///////////////////////////////////////////////////////////////////////////////
// https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion
template <typename T>
util::vector3<T>
util::rotate (vector3<T> v, quaternion<T> q)
{
CHECK (is_normalised (v));
CHECK (is_normalised (q));
#if 0
// Naive:
quaternion<T> p { 0, v.x, v.y, v.z };
auto p_ = q * p * conjugate (q);
return { p_.x, p_.y, p_.z };
#elif 1
// This code actually matches the stackexchange link, but is longer than
// the code below it (which also actually works)...
const util::vector3<T> u { q.x, q.y, q.z };
const auto s = q.w;
return 2 * dot (u, v) * u
+ (s * s - dot (u, u)) * v
+ 2 * s * cross (u, v);
#elif 0
// I have no idea where this code is from or how it was derived...
util::vector3<T> u { q.x, q.y, q.z };
return v + 2 * cross (u, cross (u, v) + q.w * v);
#endif
}
///////////////////////////////////////////////////////////////////////////////
// based on the implementation at:
// http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-17-quaternions/
template <typename T>
quaternion<T>
quaternion<T>::look (vector<3,T> fwd, vector<3,T> up)
{
CHECK (is_normalised (fwd));
CHECK (is_normalised (up));
constexpr util::vector3<T> FWD { 0, 0, -1 };
constexpr util::vector3<T> UP { 0, 1, 0 };
// find the rotation from the world fwd to the object fwd
auto q1 = from_to (FWD, fwd);
// orthogonalise the up vector
auto right = cross (fwd, up);
auto orthup = normalised (cross (right, fwd));
// recompute the up vector in object space
auto newup = rotate (UP, q1);
// find rotation from object up to world up
auto q2 = from_to (newup, orthup);
return q2 * q1;
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
bool
util::almost_equal (quaternion<T> a, quaternion<T> b)
{
return almost_equal (a.w, b.w) &&
almost_equal (a.x, b.x) &&
almost_equal (a.y, b.y) &&
almost_equal (a.z, b.z);
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
std::ostream&
util::operator<< (std::ostream &os, const quaternion<T> q)
{
return os << "[" << q.w << ", " << q.x << ", " << q.y << ", " << q.z << "]";
}
///////////////////////////////////////////////////////////////////////////////
namespace util::debug {
template <typename T>
struct validator<quaternion<T>> {
static constexpr
bool
is_valid (const quaternion<T> &q)
{
return is_normalised (q);
}
};
}
///////////////////////////////////////////////////////////////////////////////
#define INSTANTIATE(T) \
template util::vector3<T> util::rotate (util::vector3<T>, util::quaternion<T>); \
template quaternion<T> util::conjugate (quaternion<T>); \
template quaternion<T> util::operator* (quaternion<T>, quaternion<T>); \
template quaternion<T>& util::operator*= (quaternion<T>&, quaternion<T>); \
template quaternion<T> util::operator/ (quaternion<T>, quaternion<T>); \
template bool util::almost_equal (util::quaternion<T>, util::quaternion<T>); \
template std::ostream& util::operator<< (std::ostream&, quaternion<T>); \
template bool util::debug::is_valid(const quaternion<T>&); \
template struct util::quaternion<T>;
INSTANTIATE(float)
INSTANTIATE(double)