458 lines
12 KiB
C++
458 lines
12 KiB
C++
/*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Copyright 2011-2015 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "matrix.hpp"
|
|
|
|
#include "debug.hpp"
|
|
#include "iterator.hpp"
|
|
#include "point.hpp"
|
|
|
|
#include <cstring>
|
|
#include <cmath>
|
|
|
|
using namespace util;
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename T>
|
|
matrix<S,T>
|
|
matrix<S,T>::transposed (void) const
|
|
{
|
|
matrix<S,T> m;
|
|
|
|
for (size_t i = 0; i < S; ++i)
|
|
for (size_t j = 0; j < S; ++j)
|
|
m.values[i][j] = values[j][i];
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix<S,T>&
|
|
matrix<S,T>::transpose (void)
|
|
{
|
|
for (size_t i = 0; i < S; ++i)
|
|
for (size_t j = i + 1; j < S; ++j)
|
|
std::swap (values[i][j], values[j][i]);
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix<S,T>&
|
|
matrix<S,T>::invert (void)
|
|
{
|
|
return *this = inverse ();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//template <size_t S, typename T>
|
|
//matrix<S,T>&
|
|
//matrix<S,T>::invert_affine (void)
|
|
//{
|
|
// CHECK (is_affine ());
|
|
//
|
|
// // inv ([ M b ] == [ inv(M) -inv(M).b ]
|
|
// // [ 0 1 ]) [ 0 1 ]
|
|
//
|
|
// // Invert the 3x3 M
|
|
// T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
|
|
// T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
|
|
// T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
|
|
//
|
|
// T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
|
|
// T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
|
|
// T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
|
|
//
|
|
// T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
|
|
// T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
|
|
// T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
|
|
//
|
|
// T d = values[0][0] * A + values[0][1] * B + values[0][2] * C;
|
|
// CHECK_NEQ (d, 0.0);
|
|
//
|
|
// values[0][0] = A / d;
|
|
// values[0][1] = D / d;
|
|
// values[0][2] = G / d;
|
|
// values[1][0] = B / d;
|
|
// values[1][1] = E / d;
|
|
// values[1][2] = H / d;
|
|
// values[2][0] = C / d;
|
|
// values[2][1] = F / d;
|
|
// values[2][2] = K / d;
|
|
//
|
|
// // Multiply the b
|
|
// T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
|
|
// T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
|
|
// T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
|
|
//
|
|
// values[0][3] = b0;
|
|
// values[1][3] = b1;
|
|
// values[2][3] = b2;
|
|
//
|
|
// return *this;
|
|
//}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
T
|
|
util::matrix<S,T>::determinant (void) const
|
|
{
|
|
return util::determinant (*this);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
util::matrix<S,T>
|
|
util::matrix<S,T>::inverse (void) const
|
|
{
|
|
return util::inverse (*this);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename T>
|
|
matrix<S,T>
|
|
util::transposed (const matrix<S,T> &m)
|
|
{
|
|
util::matrix<S,T> res;
|
|
|
|
for (size_t y = 0; y < S; ++y)
|
|
for (size_t x = 0; x < S; ++x)
|
|
res[y][x] = m[x][y];
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template matrix3f util::transposed (const matrix3f&);
|
|
template matrix4f util::transposed (const matrix4f&);
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename T>
|
|
matrix<S,T>
|
|
matrix<S,T>::operator* (const matrix<S,T> &rhs) const
|
|
{
|
|
matrix<S,T> m;
|
|
|
|
for (unsigned row = 0; row < S; ++row) {
|
|
for (unsigned col = 0; col < S; ++col) {
|
|
m.values[row][col] = T {0};
|
|
|
|
for (unsigned inner = 0; inner < S; ++inner)
|
|
m.values[row][col] += values[row][inner] * rhs.values[inner][col];
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix<S,T>&
|
|
matrix<S,T>::operator*=(const matrix<S,T> &rhs)
|
|
{
|
|
return *this = *this * rhs;
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename T>
|
|
vector<S,T>
|
|
matrix<S,T>::operator* (const vector<S,T> &rhs) const
|
|
{
|
|
vector<S,T> out;
|
|
|
|
for (size_t i = 0; i < S; ++i)
|
|
out[i] = dot (rhs, values[i]);
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
point<S,T>
|
|
matrix<S,T>::operator* (const point<S,T> &rhs) const
|
|
{
|
|
point<S,T> out;
|
|
|
|
for (size_t i = 0; i < S; ++i)
|
|
out[i] = dot (rhs, values[i]);
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
bool
|
|
matrix<S,T>::is_affine (void) const
|
|
{
|
|
for (size_t i = 0; i < S - 1; ++i)
|
|
if (!exactly_zero (values[S-1][i]))
|
|
return false;
|
|
|
|
return exactly_equal (values[S-1][S-1], T{1});
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::ortho (T left, T right,
|
|
T bottom, T top,
|
|
T near, T far)
|
|
{
|
|
CHECK_GT (far, near);
|
|
|
|
T tx = - (right + left) / (right - left);
|
|
T ty = - (top + bottom) / (top - bottom);
|
|
T tz = - (far + near) / (far - near);
|
|
|
|
T rl = 2 / (right - left);
|
|
T tb = 2 / (top - bottom);
|
|
T fn = 2 / (far - near);
|
|
|
|
return { {
|
|
{ rl, 0, 0, tx },
|
|
{ 0, tb, 0, ty },
|
|
{ 0, 0, fn, tz },
|
|
{ 0, 0, 0, 1 },
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::ortho2D (T left, T right,
|
|
T bottom, T top)
|
|
{
|
|
return ortho (left, right, bottom, top, -1, 1);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::perspective (T fov, T aspect, range<T> Z)
|
|
{
|
|
CHECK_GE (Z.lo, 0);
|
|
CHECK_GE (Z.hi, 0);
|
|
|
|
T f = 1 / std::tan (fov / 2);
|
|
|
|
T x = f / aspect;
|
|
T y = f;
|
|
T z1 = (Z.hi + Z.lo) / (Z.lo - Z.hi);
|
|
T z2 = (2 * Z.hi * Z.lo) / (Z.lo - Z.hi);
|
|
|
|
return { {
|
|
{ x, 0, 0, 0 },
|
|
{ 0, y, 0, 0 },
|
|
{ 0, 0, z1, z2 },
|
|
{ 0, 0, -1, 0 }
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Emulates gluLookAt
|
|
//
|
|
// Translates the viewpoint to the origin, then rotates the world to point
|
|
// along eye to centre (negative-Z).
|
|
// Implemented for right handed world coordinates.
|
|
//
|
|
// Assumes 'up' is normalised.
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::look_at (const util::point<3,T> eye,
|
|
const util::point<3,T> centre,
|
|
const util::vector<3,T> up)
|
|
{
|
|
CHECK (is_normalised (up));
|
|
|
|
const auto f = normalised (centre - eye);
|
|
const auto s = normalised (cross (f, up));
|
|
const auto u = cross (s, f);
|
|
|
|
const util::matrix4<T> rot {{
|
|
{ s.x, s.y, s.z, 0 },
|
|
{ u.x, u.y, u.z, 0 },
|
|
{-f.x,-f.y,-f.z, 0 },
|
|
{ 0, 0, 0, 1 },
|
|
}};
|
|
|
|
return rot * util::matrix4<T>::translation (0-eye);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::translation (util::vector<2,T> v)
|
|
{
|
|
return translation ({v.x, v.y, 0});
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::translation (util::vector<3,T> v)
|
|
{
|
|
return { {
|
|
{ 1.f, 0.f, 0.f, v.x },
|
|
{ 0.f, 1.f, 0.f, v.y },
|
|
{ 0.f, 0.f, 1.f, v.z },
|
|
{ 0.f, 0.f, 0.f, 1.f },
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::scale (T mag)
|
|
{
|
|
return scale (vector<3,T> (mag));
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::scale (util::vector<3,T> v)
|
|
{
|
|
return { {
|
|
{ v.x, 0.f, 0.f, 0.f },
|
|
{ 0.f, v.y, 0.f, 0.f },
|
|
{ 0.f, 0.f, v.z, 0.f },
|
|
{ 0.f, 0.f, 0.f, 1.f }
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template <size_t S, typename T>
|
|
matrix4<T>
|
|
matrix<S,T>::rotation (T angle, util::vector<3,T> about)
|
|
{
|
|
CHECK (is_normalised (about));
|
|
|
|
T c = std::cos (angle);
|
|
T s = std::sin (angle);
|
|
T x = about.x,
|
|
y = about.y,
|
|
z = about.z;
|
|
|
|
return { {
|
|
{ x * x * (1 - c) + c,
|
|
x * y * (1 - c) - z * s,
|
|
x * z * (1 - c) + y * s,
|
|
0
|
|
},
|
|
|
|
{ y * x * (1 - c) + z * s,
|
|
y * y * (1 - c) + c,
|
|
y * z * (1 - c) - x * s,
|
|
0
|
|
},
|
|
|
|
{ z * x * (1 - c) - y * s,
|
|
z * y * (1 - c) + x * s,
|
|
z * z * (1 - c) + c,
|
|
0
|
|
},
|
|
|
|
{ 0, 0, 0, 1 }
|
|
} };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template struct util::matrix<2,float>;
|
|
template struct util::matrix<2,double>;
|
|
|
|
template struct util::matrix<3,float>;
|
|
template struct util::matrix<3,double>;
|
|
|
|
template struct util::matrix<4,float>;
|
|
template struct util::matrix<4,double>;
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
// Uses the algorithm from:
|
|
// "Extracting Euler Angles from a Rotation Matrix" by
|
|
// Mike Day, Insomniac Games.
|
|
template <size_t S, typename T>
|
|
util::vector<3,T>
|
|
util::to_euler (const matrix<S,T> &m)
|
|
{
|
|
static_assert (S == 3 || S == 4, "only defined for 3d affine transforms");
|
|
|
|
const auto theta0 = std::atan2 (m[2][1], m[2][2]);
|
|
|
|
const auto c1 = std::hypot (m[0][0], m[1][0]);
|
|
const auto theta1 = std::atan2 (-m[2][0], c1);
|
|
|
|
const auto s0 = std::sin(theta0);
|
|
const auto c0 = std::cos(theta0);
|
|
const auto theta2 = std::atan2(
|
|
s0 * m[0][2] - c0 * m[0][1],
|
|
c0 * m[1][1] - s0 * m[1][2]
|
|
);
|
|
|
|
return { theta0, theta1, theta2 };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template util::vector<3,float> util::to_euler (const matrix<3,float>&);
|
|
template util::vector<3,float> util::to_euler (const matrix<4,float>&);
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename T>
|
|
std::ostream&
|
|
util::operator<< (std::ostream &os, const matrix<S,T> &m)
|
|
{
|
|
os << "{ ";
|
|
|
|
for (size_t i = 0; i < S; ++i) {
|
|
os << "{ ";
|
|
std::copy (m[i], m[i]+S, util::infix_iterator<float> (os, ", "));
|
|
os << ((i == S - 1) ? " }" : " }, ");
|
|
}
|
|
|
|
return os << " }";
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
template std::ostream& util::operator<< (std::ostream&, const matrix<4,float>&);
|
|
template std::ostream& util::operator<< (std::ostream&, const matrix<4,double>&);
|