libcruft-util/matrix.cpp
Danny Robson 35e3f69ad2 maths, view: rationalise equal,almost_equal,==
views should not do elementwise comparisons for equality operators.
they are pairs of iterators and are only equal if their iterators are
equal.

instead, use `equal` for elementwise equality. we update the name of
exactly_equal to perform this operation too.
2018-01-31 19:33:42 +11:00

354 lines
9.5 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2011-2015 Danny Robson <danny@nerdcruft.net>
*/
#include "matrix.hpp"
#include "debug.hpp"
#include "iterator.hpp"
#include "point.hpp"
#include <cstring>
#include <cmath>
using util::matrix;
///////////////////////////////////////////////////////////////////////////////
//-----------------------------------------------------------------------------
//template <std::size_t S, typename T>
//matrix<S,T>&
//matrix<S,T>::invert_affine (void)
//{
// CHECK (is_affine ());
//
// // inv ([ M b ] == [ inv(M) -inv(M).b ]
// // [ 0 1 ]) [ 0 1 ]
//
// // Invert the 3x3 M
// T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
// T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
// T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
//
// T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
// T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
// T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
//
// T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
// T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
// T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
//
// T d = values[0][0] * A + values[0][1] * B + values[0][2] * C;
// CHECK_NEQ (d, 0.0);
//
// values[0][0] = A / d;
// values[0][1] = D / d;
// values[0][2] = G / d;
// values[1][0] = B / d;
// values[1][1] = E / d;
// values[1][2] = H / d;
// values[2][0] = C / d;
// values[2][1] = F / d;
// values[2][2] = K / d;
//
// // Multiply the b
// T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
// T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
// T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
//
// values[0][3] = b0;
// values[1][3] = b1;
// values[2][3] = b2;
//
// return *this;
//}
//-----------------------------------------------------------------------------
template <std::size_t Rows, std::size_t Cols, typename T>
T
util::matrix<Rows,Cols,T>::determinant (void) const
{
return util::determinant (*this);
}
//-----------------------------------------------------------------------------
template <std::size_t Rows, std::size_t Cols, typename T>
util::matrix<Rows,Cols,T>
util::matrix<Rows,Cols,T>::inverse (void) const
{
return util::inverse (*this);
}
///////////////////////////////////////////////////////////////////////////////
template <std::size_t Rows, std::size_t Cols, typename T>
matrix<Cols,Rows,T>
util::transposed (const matrix<Rows,Cols,T> &m)
{
util::matrix<Cols,Rows,T> res;
for (std::size_t y = 0; y < Rows; ++y)
for (std::size_t x = 0; x < Cols; ++x)
res[y][x] = m[x][y];
return res;
}
//-----------------------------------------------------------------------------
template util::matrix3f util::transposed (const matrix3f&);
template util::matrix4f util::transposed (const matrix4f&);
///////////////////////////////////////////////////////////////////////////////
template <std::size_t Rows, std::size_t Cols, typename T>
bool
matrix<Rows,Cols,T>::is_affine (void) const
{
if (Rows != Cols)
return false;
for (std::size_t i = 0; i < Rows - 1; ++i)
if (!exactly_zero (values[Rows-1][i]))
return false;
return equal (values[Rows-1][Rows-1], T{1});
}
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::ortho (T left, T right,
T bottom, T top,
T near, T far)
{
CHECK_GT (far, near);
T tx = - (right + left) / (right - left);
T ty = - (top + bottom) / (top - bottom);
T tz = - (far + near) / (far - near);
T rl = 2 / (right - left);
T tb = 2 / (top - bottom);
T fn = 2 / (far - near);
return {{
{ rl, 0, 0, tx },
{ 0, tb, 0, ty },
{ 0, 0, fn, tz },
{ 0, 0, 0, 1 },
}};
}
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::ortho2D (T left, T right,
T bottom, T top)
{
return ortho (left, right, bottom, top, T{-1}, T{1});
}
template util::matrix4f util::ortho2D (float, float, float, float);
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::perspective (T fov, T aspect, range<T> Z)
{
CHECK_GE (Z.lo, 0);
CHECK_GE (Z.hi, 0);
T f = 1 / std::tan (fov / 2);
T x = f / aspect;
T y = f;
T z1 = (Z.hi + Z.lo) / (Z.lo - Z.hi);
T z2 = (2 * Z.hi * Z.lo) / (Z.lo - Z.hi);
return { {
{ x, 0, 0, 0 },
{ 0, y, 0, 0 },
{ 0, 0, z1, z2 },
{ 0, 0, -1, 0 }
} };
}
template util::matrix4f util::perspective<float> (float, float, range<float>);
//-----------------------------------------------------------------------------
// Emulates gluLookAt
//
// Translates the viewpoint to the origin, then rotates the world to point
// along eye to centre (negative-Z).
// Implemented for right handed world coordinates.
//
// Assumes 'up' is normalised.
template <typename T>
util::matrix4<T>
util::look_at (const util::point<3,T> eye,
const util::point<3,T> centre,
const util::vector<3,T> up)
{
CHECK (is_normalised (up));
const auto f = normalised (centre - eye);
const auto s = normalised (cross (f, up));
const auto u = cross (s, f);
const util::matrix4<T> rot {{
{ s.x, s.y, s.z, 0 },
{ u.x, u.y, u.z, 0 },
{-f.x,-f.y,-f.z, 0 },
{ 0, 0, 0, 1 },
}};
return rot * util::translation<T> (0-eye);
}
template util::matrix4f util::look_at (util::point3f, util::point3f, util::vector3f);
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::translation (util::vector<3,T> v)
{
return { {
{ 1.f, 0.f, 0.f, v.x },
{ 0.f, 1.f, 0.f, v.y },
{ 0.f, 0.f, 1.f, v.z },
{ 0.f, 0.f, 0.f, 1.f },
} };
}
template util::matrix4f util::translation (util::vector3f);
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::scale (T mag)
{
return scale (vector<3,T> (mag));
}
template util::matrix4f util::scale(float);
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::scale (util::vector<3,T> v)
{
return { {
{ v.x, 0.f, 0.f, 0.f },
{ 0.f, v.y, 0.f, 0.f },
{ 0.f, 0.f, v.z, 0.f },
{ 0.f, 0.f, 0.f, 1.f }
} };
}
template util::matrix4f util::scale(util::vector3f);
//-----------------------------------------------------------------------------
template <typename T>
util::matrix4<T>
util::rotation (T angle, util::vector<3,T> about)
{
CHECK (is_normalised (about));
T c = std::cos (angle);
T s = std::sin (angle);
T x = about.x,
y = about.y,
z = about.z;
return { {
{ x * x * (1 - c) + c,
x * y * (1 - c) - z * s,
x * z * (1 - c) + y * s,
0
},
{ y * x * (1 - c) + z * s,
y * y * (1 - c) + c,
y * z * (1 - c) - x * s,
0
},
{ z * x * (1 - c) - y * s,
z * y * (1 - c) + x * s,
z * z * (1 - c) + c,
0
},
{ 0, 0, 0, 1 }
} };
}
template util::matrix4f util::rotation (float, util::vector3f);
//-----------------------------------------------------------------------------
template struct util::matrix<2,2,float>;
template struct util::matrix<2,2,double>;
template struct util::matrix<3,3,float>;
template struct util::matrix<3,3,double>;
template struct util::matrix<4,4,float>;
template struct util::matrix<4,4,double>;
///////////////////////////////////////////////////////////////////////////////
// Uses the algorithm from:
// "Extracting Euler Angles from a Rotation Matrix" by
// Mike Day, Insomniac Games.
template <std::size_t Rows, std::size_t Cols, typename T>
util::vector<3,T>
util::to_euler (const matrix<Rows,Cols,T> &m)
{
static_assert (Rows == Cols && (Rows == 3 || Rows == 4),
"only defined for 3d affine transforms");
const auto theta0 = std::atan2 (m[2][1], m[2][2]);
const auto c1 = std::hypot (m[0][0], m[1][0]);
const auto theta1 = std::atan2 (-m[2][0], c1);
const auto s0 = std::sin(theta0);
const auto c0 = std::cos(theta0);
const auto theta2 = std::atan2(
s0 * m[0][2] - c0 * m[0][1],
c0 * m[1][1] - s0 * m[1][2]
);
return { theta0, theta1, theta2 };
}
//-----------------------------------------------------------------------------
template util::vector<3,float> util::to_euler (const matrix<3,3,float>&);
template util::vector<3,float> util::to_euler (const matrix<4,4,float>&);