213 lines
6.0 KiB
C++
213 lines
6.0 KiB
C++
/*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* Copyright 2015-2018 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "fwd.hpp"
|
|
|
|
#include "../view.hpp"
|
|
#include "../point.hpp"
|
|
#include "../vector.hpp"
|
|
|
|
#include <cruft/util/rand/distribution/normal.hpp>
|
|
|
|
#include <cstdlib>
|
|
#include <iosfwd>
|
|
|
|
|
|
namespace cruft::geom {
|
|
///////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename ValueT>
|
|
struct ellipse {
|
|
// the centre point of the ellipsoid
|
|
cruft::point<S,ValueT> origin;
|
|
|
|
// the distance from the centre along each axis to the shape's edge
|
|
cruft::vector<S,ValueT> radius;
|
|
|
|
// the orientation of up for the shape
|
|
cruft::vector<S,ValueT> up;
|
|
};
|
|
|
|
using ellipse2f = ellipse<2,float>;
|
|
using ellipse3f = ellipse<3,float>;
|
|
|
|
|
|
template <size_t S, typename T>
|
|
bool
|
|
intersects (ellipse<S,T>, point<S,T>);
|
|
|
|
|
|
/// returns the approximate surface area of the ellipse
|
|
///
|
|
/// the general form involves _substantially_ more expensive and
|
|
/// complicated maths which is prohibitive right now.
|
|
///
|
|
/// the relative error should be at most 1.061%
|
|
inline float
|
|
area (ellipse3f self)
|
|
{
|
|
auto const semiprod = self.radius * self.radius.indices<1,2,0> ();
|
|
auto const semipow = pow (semiprod, 1.6f);
|
|
|
|
return 4 * pi<float> * std::pow (sum (semipow) / 3, 1/1.6f);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T
|
|
area (ellipse<2,T> self)
|
|
{
|
|
return pi<T> * product (self.radius);
|
|
}
|
|
|
|
|
|
template <size_t S, typename T>
|
|
T
|
|
volume (ellipse<S,T> self)
|
|
{
|
|
return 4 / T{3} * pi<T> * product (self.radius);
|
|
}
|
|
|
|
|
|
template <size_t DimensionV, typename ValueT>
|
|
point<DimensionV,ValueT>
|
|
project (
|
|
ray<DimensionV,ValueT>,
|
|
ellipse<DimensionV,ValueT>
|
|
);
|
|
|
|
|
|
/// returns the distance along a ray to the surface of an ellipse.
|
|
///
|
|
/// returns infinity if there is no intersection
|
|
template <size_t DimensionV, typename ValueT>
|
|
ValueT
|
|
distance (
|
|
ray<DimensionV,ValueT>,
|
|
ellipse<DimensionV,ValueT>
|
|
);
|
|
|
|
|
|
// generate a covering ellipsoid for an arbitrary set of points
|
|
//
|
|
// this isn't guaranteed to be optimal in any specific sense. but it
|
|
// ought not be outrageously inefficient...
|
|
ellipse3f
|
|
cover (cruft::view<const point3f*>);
|
|
|
|
|
|
/// returns a point that is uniformly distributed about the ellipse
|
|
/// surface.
|
|
///
|
|
/// NOTE: I don't have a strong proof that the below is in fact properly
|
|
/// uniformly distributed, so if you need a strong guarantee for your work
|
|
/// then it might not be the best option. But visual inspection appears to
|
|
/// confirm there aren't obvious patterns.
|
|
///
|
|
/// the concept was taken from: https://math.stackexchange.com/a/2514182
|
|
template <typename RandomT>
|
|
cruft::point3f
|
|
sample_surface (ellipse3f self, RandomT &generator)
|
|
{
|
|
const auto [a, b, c] = self.radius;
|
|
const auto a2 = a * a;
|
|
const auto b2 = b * b;
|
|
const auto c2 = c * c;
|
|
|
|
// generate a direction vector from a normally distributed random variable
|
|
auto const x = cruft::rand::distribution::normal<float> (0, a2) (generator);
|
|
auto const y = cruft::rand::distribution::normal<float> (0, b2) (generator);
|
|
auto const z = cruft::rand::distribution::normal<float> (0, c2) (generator);
|
|
|
|
// find the distance to the surface along the direction vector
|
|
auto const d = std::sqrt (x * x / a2 + y * y / b2 + z * z / c2);
|
|
|
|
return self.origin + cruft::vector3f {x,y,z} / d;
|
|
}
|
|
|
|
|
|
template <size_t S, typename T>
|
|
std::ostream&
|
|
operator<< (std::ostream&, ellipse<S,T>);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#include "sample/fwd.hpp"
|
|
|
|
#include "../random.hpp"
|
|
|
|
#include <cmath>
|
|
#include <random>
|
|
|
|
namespace cruft::geom::sample {
|
|
/// Specialisation for uniform sampling of ellipses
|
|
template <typename T>
|
|
class volume<ellipse<2,T>> {
|
|
public:
|
|
using shape_type = ellipse<2,T>;
|
|
|
|
volume (shape_type &&) = delete;
|
|
volume (shape_type const &target):
|
|
m_target (target)
|
|
{ ; }
|
|
|
|
|
|
/// Generate a random point within the ellipse.
|
|
template <typename GeneratorT>
|
|
auto
|
|
eval (GeneratorT &&g) const noexcept
|
|
{
|
|
// We use a two step process:
|
|
// * Generate a point within a unit sphere
|
|
// * Transform the point to an ellipse.
|
|
|
|
// TODO: We assume floating point for the time being because it
|
|
// simplifies interaction with trig routines. There's no
|
|
// intrinsic reason for this limitation though.
|
|
static_assert (
|
|
std::is_floating_point_v<T>,
|
|
"The current implementation assumes floating point."
|
|
);
|
|
|
|
// Choose a direction and a distance within the unit circle.
|
|
//
|
|
// `sqrt` of the distance is used to ensure a uniform
|
|
// distribution.
|
|
T phi = random::uniform<T> (g) * 2 * pi<T>;
|
|
T rho = std::sqrt (random::uniform<T> (g));
|
|
|
|
cruft::point2<T> const circle_pos {
|
|
std::cos (phi),
|
|
std::sin (phi)
|
|
};
|
|
|
|
auto const offset = circle_pos * rho * m_target.radius;
|
|
return m_target.origin + offset.template as<cruft::vector> ();
|
|
}
|
|
|
|
|
|
private:
|
|
shape_type const &m_target;
|
|
};
|
|
|
|
|
|
#if 0
|
|
// TODO: We should implement a higher dimensional ellipsoid sampler for
|
|
// efficiency gains over rejection sampling that we currently use.
|
|
template <typename T>
|
|
struct sampler<ellipse<3,T>>
|
|
{
|
|
template <typename GeneratorT>
|
|
static cruft::point<3,T>
|
|
eval (ellipse<3,T>, GeneratorT&&);
|
|
};
|
|
#endif
|
|
}
|