132 lines
3.4 KiB
C++
132 lines
3.4 KiB
C++
/*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Copyright 2015-2016 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "./bezier.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
namespace util {
|
|
template <>
|
|
point2f
|
|
bezier<1>::eval (float t) const
|
|
{
|
|
CHECK_GE (t, 0);
|
|
CHECK_LE (t, 1);
|
|
|
|
auto v0 = (1 - t) * m_points[0];
|
|
auto v1 = t * m_points[1];
|
|
|
|
return {
|
|
v0.x + v1.x,
|
|
v0.y + v1.y
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
constexpr
|
|
util::vector2f
|
|
orthonormal (util::vector2f v)
|
|
{
|
|
const auto len = norm (v);
|
|
CHECK_NEZ (len);
|
|
return util::vector2f { -v.y / len, v.x / len };
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
float
|
|
bezier<1>::closest (util::point2f q) const noexcept
|
|
{
|
|
const auto ab = m_points[1] - m_points[0];
|
|
const auto aq = q - m_points[0];
|
|
|
|
return dot (aq, ab) / dot (ab, ab);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
float
|
|
bezier<1>::distance (util::point2f q) const noexcept
|
|
{
|
|
const auto ab = m_points[1] - m_points[0];
|
|
const auto t = limit (closest (q), 0, 1);
|
|
const auto p = m_points[0] + t * ab;
|
|
|
|
return util::distance (q, p);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
sdot_t
|
|
bezier<1>::sdot (const point2f q) const noexcept
|
|
{
|
|
// find the closest parameter 't' to the point 'q' for the parametric line
|
|
const auto qa = m_points[0] - q;
|
|
const auto ab = m_points[1] - m_points[0];
|
|
const auto t = closest (q);
|
|
|
|
// find the vector to, and distance to, the nearest endpoint 'e'
|
|
const auto qe = m_points[t > 0.5] - q;
|
|
const auto d_e = norm (qe);
|
|
|
|
// if we're on the segment return the distance to the segment
|
|
if (t >= 0 && t <= 1) {
|
|
const auto ortho = util::vector2f { -ab.y, ab.x } / norm (ab);
|
|
const auto d = dot (ortho, qa);
|
|
|
|
// not _entirely_ sure why we need this condition
|
|
if (abs (d) <= d_e) {
|
|
return { d, 0 };
|
|
}
|
|
}
|
|
|
|
// return the distance and angle to the endpoint
|
|
return {
|
|
sign (cross (ab, qa)) * d_e,
|
|
abs (
|
|
dot (normalised (ab), normalised (qe))
|
|
)
|
|
};
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
namespace util {
|
|
template <>
|
|
std::array<util::vector2f,2>
|
|
bezier<1>::coeffs (void) const
|
|
{
|
|
auto &v = m_coeffs;
|
|
|
|
return {
|
|
-1.f * v[1] + 1.f * v[0],
|
|
+1.f * v[1],
|
|
};
|
|
}
|
|
}
|