libcruft-util/region.cpp
2015-03-02 18:49:12 +11:00

430 lines
11 KiB
C++

/*
* This file is part of libgim.
*
* libgim is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2010-2015 Danny Robson <danny@nerdcruft.net>
*/
#include "region.hpp"
#include "debug.hpp"
#include "types/casts.hpp"
#include <cmath>
#include <type_traits>
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>::region (util::extent<size_type> _extent):
region (util::point<2,T>::ORIGIN, _extent)
{ ; }
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>::region (point<2,T> _point,
extent<size_type> _size):
x (_point.x),
y (_point.y),
w (_size.w),
h (_size.h)
{ ; }
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>::region (point<2,T> _a,
point<2,T> _b):
region (_a, _b - _a)
{
CHECK_GE (_b.x, _a.x);
CHECK_GE (_b.y, _a.y);
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>::region (position_type _x,
position_type _y,
size_type _w,
size_type _h):
region (point<2,T> {_x, _y}, extent<T> {_w, _h})
{ ; }
//-----------------------------------------------------------------------------
template <typename T>
typename util::region<T>::size_type
util::region<T>::area (void) const
{
return w * h;
}
//-----------------------------------------------------------------------------
template <typename T>
typename util::region<T>::size_type
util::region<T>::diameter (void) const
{
return static_cast<size_type> (std::sqrt (w * w + h * h));
}
//-----------------------------------------------------------------------------
template <typename T>
typename util::region<T>::extent_t
util::region<T>::magnitude (void) const
{
return { w, h };
}
//-----------------------------------------------------------------------------
template <typename T>
typename util::region<T>::extent_t
util::region<T>::magnitude (extent_t e)
{
w = e.w;
h = e.h;
return magnitude ();
}
//-----------------------------------------------------------------------------
template <typename T>
void
util::region<T>::scale (T factor)
{
x -= (w * factor - w) / T{2};
y -= (h * factor - h) / T{2};
w = w * factor;
h = h * factor;
}
//-----------------------------------------------------------------------------
template <typename T>
bool
util::region<T>::empty (void) const
{
return almost_zero (area ());
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<2,T>
util::region<T>::rebase (util::point<2,T> p)
{
x = p.x;
y = p.y;
return base ();
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<2,T>
util::region<T>::base (void) const
{
return { x, y };
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<2,T>
util::region<T>::away (void) const
{
return { x + w, y + h };
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<2,T>
util::region<T>::centre (void) const
{
T cx = x + w / T{2},
cy = y + h / T{2};
return point<2,T> { cx, cy };
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<2,T>
util::region<T>::closest (point<2,T> p) const
{
return {
p.x < x ? x :
p.x > x + w ? x + w :
p.x,
p.y < y ? y :
p.y > y + h ? y + h :
p.y
};
}
//-----------------------------------------------------------------------------
template <typename T>
bool
util::region<T>::includes (const point<2,T> &p) const
{
return p.x >= x &&
p.y >= y &&
p.x - x <= w &&
p.y - y <= h;
}
//-----------------------------------------------------------------------------
template <typename T>
bool
util::region<T>::contains (const point<2,T> &p) const
{
return p.x > x &&
p.y > y &&
p.x - x < w &&
p.y - y < h;
}
//-----------------------------------------------------------------------------
// FIXME: This will fail with an actual infinite range (NaNs will be generated
// in the conditionals).
template <typename T>
bool
util::region<T>::intersects (const util::region<T> &rhs) const
{
return x < rhs.x + rhs.w &&
rhs.x < x + w &&
y < rhs.y + rhs.h &&
rhs.y < y + h;
}
//-----------------------------------------------------------------------------
template <typename T>
void
util::region<T>::constrain (point<2,T> &p) const
{
p.x = std::min (std::max (p.x, x), x + w);
p.y = std::min (std::max (p.y, y), y + h);
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<2,T>
util::region<T>::constrained (const point<2,T> &p) const
{
point<2,T> v;
v.x = std::min (std::max (p.x, x), x + w);
v.y = std::min (std::max (p.y, y), y + h);
return v;
}
//-----------------------------------------------------------------------------
template<typename T>
util::region<T>
util::region<T>::intersection (const util::region<T> &rhs) const
{
T newx1 = max (x, rhs.x),
newy1 = max (y, rhs.y),
newx2 = min (x + sign_cast<T> (w), rhs.x + sign_cast<T> (rhs.w)),
newy2 = min (y + sign_cast<T> (h), rhs.y + sign_cast<T> (rhs.h));
if (newx2 < newx1 || newy2 < newy1)
throw std::logic_error ("No overlap");
size_type nw = sign_cast<size_type> (newx2 - newx1);
size_type nh = sign_cast<size_type> (newy2 - newy1);
return util::region<T> (newx1, newy1, nw, nh);
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>
util::region<T>::inset (T mag)
{
CHECK_GE (w - x, 2 * mag);
CHECK_GE (h - y, 2 * mag);
return { x + mag, y + mag, w - 2 * mag, h - 2 * mag };
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>&
util::region<T>::expand (T _w, T _h)
{
x -= _w;
y -= _h;
w += _w * 2;
h += _h * 2;
return *this;
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>&
util::region<T>::expand (T mag)
{
return expand (mag, mag);
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>
util::region<T>::expanded (T _w, T _h) const
{
return {
x - _w,
y - _h,
w + _w * 2,
h + _h * 2,
};
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>
util::region<T>::expanded (T mag) const
{
return expanded (mag, mag);
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
util::region<T>
util::region<T>::operator+ (vector<2,T> rhs) const
{
return { x + rhs.x, y + rhs.y, w, h };
}
//-----------------------------------------------------------------------------
template <typename T>
util::region<T>
util::region<T>::operator- (vector<2,T> rhs) const
{
return { x - rhs.x, y - rhs.y, w, h };
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
bool
util::region<T>::operator== (const region& rhs) const
{
return almost_equal (x, rhs.x) &&
almost_equal (y, rhs.y) &&
almost_equal (w, rhs.w) &&
almost_equal (h, rhs.h);
}
//-----------------------------------------------------------------------------
template <typename T>
void
util::region<T>::sanity (void) const {
CHECK_GE (w, 0);
CHECK_GE (h, 0);
static_assert(!std::is_floating_point<T>::value,
"Floating point types need width and height checks");
}
//-----------------------------------------------------------------------------
namespace util {
template <>
void region<double>::sanity (void) const {
CHECK_GE (w, 0);
CHECK_GE (h, 0);
}
template <>
void region<float>::sanity (void) const {
CHECK_GE (w, 0);
CHECK_GE (h, 0);
}
}
///----------------------------------------------------------------------------
/// The largest specifiable finite region.
///
/// Starts at half the minimum value to allow the width to cover some positive
/// range rather than just cancelling out the lowest value for signed types.
///
/// Specifically does not allow infinities. Use/define INFINITE when required.
template <typename T>
const util::region<T>
util::region<T>::MAX (
std::numeric_limits<T>::lowest () / 2,
std::numeric_limits<T>::lowest () / 2,
std::numeric_limits<T>::max (),
std::numeric_limits<T>::max ()
);
template <typename T>
const util::region<T>
util::region<T>::UNIT (0, 0, 1, 1);
//-----------------------------------------------------------------------------
template <typename T>
std::ostream&
util::operator<< (std::ostream &os, const util::region<T> &rhs) {
os << "region(" << rhs.x << ", " << rhs.y << ", " << rhs.w << ", " << rhs.h << ")";
return os;
}
//-----------------------------------------------------------------------------
namespace util {
template struct region<uint32_t>;
template struct region<uint64_t>;
template struct region<float>;
template struct region<double>;
template std::ostream& operator<< (std::ostream&, const region< int32_t>&);
template std::ostream& operator<< (std::ostream&, const region< int64_t>&);
template std::ostream& operator<< (std::ostream&, const region<uint32_t>&);
template std::ostream& operator<< (std::ostream&, const region<uint64_t>&);
template std::ostream& operator<< (std::ostream&, const region< float>&);
template std::ostream& operator<< (std::ostream&, const region< double>&);
}