libcruft-util/coord/ops.hpp

849 lines
26 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2012-2016 Danny Robson <danny@nerdcruft.net>
*/
#ifndef __UTIL_COORDS_OPS
#define __UTIL_COORDS_OPS
#include "./fwd.hpp"
#include "../debug.hpp"
#include "../maths.hpp"
#include "../preprocessor.hpp"
#include "../types/bits.hpp"
#include <cmath>
#include <cstdlib>
namespace util {
///////////////////////////////////////////////////////////////////////
// operation traits
namespace coord {
template <
template <size_t,typename> class A,
template <size_t,typename> class B
>
struct result { };
//-------------------------------------------------------------------------
template <> struct result<colour,colour> { template <size_t S, typename T> using type = colour<S,T>; };
template <> struct result<extent,extent> { template <size_t S, typename T> using type = extent<S,T>; };
template <> struct result<extent,vector> { template <size_t S, typename T> using type = extent<S,T>; };
template <> struct result<point,extent> { template <size_t S, typename T> using type = point <S,T>; };
template <> struct result<point,vector> { template <size_t S, typename T> using type = point <S,T>; };
template <> struct result<vector,point> { template <size_t S, typename T> using type = point <S,T>; };
template <> struct result<vector,vector> { template <size_t S, typename T> using type = vector<S,T>; };
template <
template <size_t,typename> class A,
template <size_t,typename> class B
>
using result_t = typename result<A,B>::type;
//---------------------------------------------------------------------
template <template <size_t,typename> class K>
struct has_norm : public std::false_type { };
template <> struct has_norm<vector> : public std::true_type { };
template <template <size_t,typename> class K>
constexpr auto has_norm_v = has_norm<K>::value;
//---------------------------------------------------------------------
template <template <size_t,typename> class K>
struct has_scalar_op : public std::false_type { };
template <> struct has_scalar_op<colour> : public std::true_type { };
template <> struct has_scalar_op<extent> : public std::true_type { };
template <> struct has_scalar_op<point> : public std::true_type { };
template <> struct has_scalar_op<vector> : public std::true_type { };
template <template <size_t,typename> class K>
constexpr auto has_scalar_op_v = has_scalar_op<K>::value;
}
template <class> struct is_coord : std::false_type { };
template <size_t S, typename T> struct is_coord<point<S,T>> : std::true_type { };
template <size_t S, typename T> struct is_coord<extent<S,T>> : std::true_type { };
template <size_t S, typename T> struct is_coord<vector<S,T>> : std::true_type { };
template <size_t S, typename T> struct is_coord<colour<S,T>> : std::true_type { };
template <class K>
constexpr bool
is_coord_v = is_coord<K>::value;
///////////////////////////////////////////////////////////////////////////
// vector operators
#define ELEMENT_OP(OP) \
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class A, \
template <size_t,typename> class B, \
typename = std::enable_if_t< \
is_coord_v<A<S,T>> && is_coord_v<B<S,U>>, \
void \
> \
> \
constexpr \
auto \
operator OP (A<S,T> a, B<S,U> b) \
{ \
typename coord::result<A,B>::template type< \
S,std::common_type_t<T,U> \
> out {}; \
for (size_t i = 0; i < S; ++i) \
out[i] = a[i] OP b[i]; \
return out; \
} \
\
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class A, \
template <size_t,typename> class B, \
typename = std::enable_if_t< \
is_coord_v<A<S,T>> && \
is_coord_v<B<S,U>> && \
std::is_same< \
std::common_type_t<T,U>, T \
>::value, \
void \
> \
> \
auto& \
operator PASTE(OP,=) (A<S,T>& a, B<S,U> b) \
{ \
for (size_t i = 0; i < S; ++i) \
a[i] PASTE(OP,=) b[i]; \
return a; \
}
ELEMENT_OP(+)
ELEMENT_OP(-)
ELEMENT_OP(*)
ELEMENT_OP(/)
ELEMENT_OP(%)
#undef ELEMENT_OP
///////////////////////////////////////////////////////////////////////////
// scalar operators
#define SCALAR_OP(OP) \
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class K, \
typename = std::enable_if_t< \
coord::has_scalar_op_v<K>, void \
> \
> \
constexpr \
auto \
operator OP (U u, K<S,T> k) \
{ \
K<S,std::common_type_t<T,U>> out{}; \
\
for (size_t i = 0; i < S; ++i) \
out[i] = u OP k[i]; \
return out; \
} \
\
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class K, \
typename = std::enable_if_t< \
coord::has_scalar_op_v<K>,void \
> \
> \
constexpr \
auto \
operator OP (K<S,T> k, U u) \
{ \
K<S,std::common_type_t<T,U>> out {}; \
\
for (size_t i = 0; i < S; ++i) \
out[i] = k[i] OP u; \
return out; \
}
SCALAR_OP(+)
SCALAR_OP(-)
SCALAR_OP(*)
SCALAR_OP(/)
SCALAR_OP(%)
#undef SCALAR_OP
//-------------------------------------------------------------------------
// scalar assignment operators.
//
// we must check the operands/results do not need casting to store in the
// destination type to avoid silent errors accumulating.
#define SCALAR_OP(OP) \
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class K, \
typename = std::enable_if_t< \
is_coord<K<S,T>>::value && \
std::is_arithmetic<T>::value && \
std::is_arithmetic<U>::value, \
void \
> \
> \
std::enable_if_t< \
std::is_same< \
T, \
std::common_type_t<T,U> \
>::value, \
K<S,T> \
>& \
operator OP (K<S,T> &k, U u) \
{ \
for (size_t i = 0; i < S; ++i) \
k[i] OP u; \
\
return k; \
}
SCALAR_OP(+=)
SCALAR_OP(-=)
SCALAR_OP(*=)
SCALAR_OP(/=)
SCALAR_OP(%=)
#undef SCALAR_OP
///////////////////////////////////////////////////////////////////////////
// unary operators
#define UNARY_OP(OP) \
template < \
size_t S, \
typename T, \
template <size_t,typename> class K, \
typename = std::enable_if_t< \
is_coord_v<K<S,T>>, void \
> \
> \
constexpr \
auto \
operator OP (K<S,T> k) \
{ \
K<S,decltype(OP std::declval<T> ())> out{}; \
\
for (size_t i = 0; i < S; ++i) \
out[i] = OP k[i]; \
\
return out; \
}
UNARY_OP(!)
UNARY_OP(~)
UNARY_OP(+)
UNARY_OP(-)
#undef UNARY_OP
///////////////////////////////////////////////////////////////////////////
// logic operators
/// elementwise equality operator
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
bool
operator== (const K<S,T> a, const K<S,T> b)
{
bool (*predicate)(const T&, const T&) = almost_equal;
return std::equal (std::cbegin (a),
std::cend (a),
std::cbegin (b),
predicate);
}
///------------------------------------------------------------------------
/// elementwise inquality operator
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
bool
operator!= (K<S,T> a, K<S,T> b)
{
return !(a == b);
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
bool
almost_zero (const K<S,T> &k)
{
return std::all_of (
std::cbegin (k),
std::cend (k),
[] (T t) { return almost_equal (t); }
);
}
///////////////////////////////////////////////////////////////////////////
// special operators
/// point-point subtraction giving a vector difference
template <
size_t S,
typename T,
typename U
>
constexpr
vector<S,std::common_type_t<T,U>>
operator- (point<S,T> a, point<S,U> b)
{
vector<S,std::common_type_t<T,U>> out {};
for (size_t i = 0; i < S; ++i)
out[i] = a[i] - b[i];
return out;
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
typename U,
typename = std::enable_if_t<
std::is_arithmetic<T>::value && std::is_arithmetic<U>::value,
void
>
>
constexpr
vector<S,std::common_type_t<T,U>>
operator- (U u, point<S,T> p)
{
return point<S,U> {u} - p;
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T
>
constexpr
T
dot (const T (&a)[S], const T (&b)[S])
{
T sum = 0;
for (size_t i = 0; i < S; ++i)
sum += a[i] * b[i];
return sum;
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class A,
template <size_t,typename> class B,
typename = std::enable_if_t<
is_coord_v<A<S,T>> && is_coord_v<B<S,T>>, void
>
>
constexpr
T
dot (A<S,T> a, B<S,T> b)
{
return dot<S,T> (a.data, b.data);
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
T
dot (K<S,T> a, const T (&b)[S])
{
return dot<S,T> (a.data, b);
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
T
dot (const T (&a)[S], K<S,T> b)
{
return dot<S,T> (a, b.data);
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<coord::has_norm_v<K>,void>
>
constexpr
T
norm2 (const K<S,T> &k)
{
return dot (k, k);
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
coord::has_norm_v<K>,
void
>
>
constexpr
T
norm (const K<S,T> &k)
{
return std::sqrt (norm2 (k));
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
coord::has_norm_v<K>,
void
>
>
constexpr
K<S,T>
normalised (const K<S,T> &k)
{
auto n = norm (k);
CHECK_NEZ (n);
return k / n;
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
coord::has_norm_v<K>,
void
>
>
constexpr
bool
is_normalised (const K<S,T> &k)
{
return almost_equal (norm2 (k), T{1});
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
K<S,T>
abs (K<S,T> k)
{
for (auto &v: k)
v = std::abs (v);
return k;
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
K<S,T>
pow (K<S,T> k)
{
for (auto &v: k)
v = pow (v);
return k;
}
///////////////////////////////////////////////////////////////////////////
// root of sum of squares
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
T
hypot (K<S,T> k)
{
return std::sqrt (sum (k * k));
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
K<S,T>
mod (K<S,T> k, T t)
{
std::transform (
std::cbegin (k),
std::cend (k),
std::begin (k),
[t] (auto v) { return mod (v, t);
});
return k;
}
///////////////////////////////////////////////////////////////////////////
// trigonometric functions
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<is_coord_v<K<S,T>>,void>
>
constexpr
K<S,T>
sin (K<S,T> k)
{
std::transform (
std::cbegin (k),
std::cend (k),
std::begin (k),
[] (auto v) { return std::sin (v); }
);
return k;
}
//-------------------------------------------------------------------------
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<is_coord_v<K<S,T>>,void>
>
constexpr
K<S,T>
cos (K<S,T> k)
{
std::transform (
std::cbegin (k),
std::cend (k),
std::begin (k),
[] (auto v) { return std::cos (v); }
);
return k;
}
///////////////////////////////////////////////////////////////////////////
// logical element operators
/// return a coord type containing the max element at each offset
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
K<S,T>
min (K<S,T> a, K<S,T> b)
{
K<S,T> out {};
for (size_t i = 0; i < S; ++i)
out[i] = min (a[i], b[i]);
return out;
}
///------------------------------------------------------------------------
// /return a coord type containing the max element at each offset
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
K<S,T>
max (K<S,T> a, K<S,T> b)
{
K<S,T> out {};
for (size_t i = 0; i < S; ++i)
out[i] = max (a[i], b[i]);
return out;
}
///------------------------------------------------------------------------
template <
size_t S,
typename T,
template<size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
T
min (const K<S,T> k)
{
return *std::min_element (std::cbegin (k), std::cend (k));
}
template <
size_t S,
typename T,
template<size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
T
max (const K<S,T> k)
{
return *std::max_element (std::cbegin (k), std::cend (k));
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>>, void
>
>
constexpr
T
sum (const K<S,T> k)
{
return sum (std::cbegin (k), std::cend (k));
}
///////////////////////////////////////////////////////////////////////////
#define VECTOR_OP(OP) \
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class A, \
template <size_t,typename> class B, \
typename = std::enable_if_t< \
is_coord_v<A<S,T>> && is_coord_v<B<S,U>>, void \
> \
> \
constexpr \
vector<S,bool> \
operator OP (const A<S,T> a, const B<S,U> b) \
{ \
vector<S,bool> out {}; \
for (size_t i = 0; i < S; ++i) \
out[i] = a[i] OP b[i]; \
return out; \
}
VECTOR_OP(<)
VECTOR_OP(>)
VECTOR_OP(<=)
VECTOR_OP(>=)
VECTOR_OP(&&)
VECTOR_OP(||)
#undef VECTOR_OP
#define SCALAR_OP(OP) \
template < \
size_t S, \
typename T, \
typename U, \
template <size_t,typename> class K, \
typename = std::enable_if_t< \
is_coord_v<K<S,T>>, void \
> \
> \
constexpr \
vector<S,bool> \
operator OP (const K<S,T> k, const U u) \
{ \
vector<S,bool> out {}; \
for (size_t i = 0; i < S; ++i) \
out[i] = k[i] OP u; \
return out; \
}
SCALAR_OP(<)
SCALAR_OP(>)
SCALAR_OP(<=)
SCALAR_OP(>=)
SCALAR_OP(&&)
SCALAR_OP(||)
#undef SCALAR_OP
//-------------------------------------------------------------------------
template <
size_t S,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,bool>>, void
>
>
constexpr
bool
any (const K<S,bool> k)
{
return std::any_of (std::cbegin (k),
std::cend (k),
identity<bool>);
}
//-------------------------------------------------------------------------
template <
size_t S,
template <size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,bool>>, void
>
>
constexpr
bool
all (const K<S,bool> k)
{
return std::all_of (std::cbegin (k),
std::cend (k),
identity<bool>);
}
///////////////////////////////////////////////////////////////////////////
template <
size_t S,
typename T,
template<size_t,typename> class K,
typename = std::enable_if_t<
is_coord_v<K<S,T>> && std::is_floating_point<T>::value, void
>
>
constexpr
K<S,T>
floor (const K<S,T> k)
{
T (*floor_func)(T) = std::floor;
K<S,T> out {};
std::transform (std::cbegin (k),
std::cend (k),
std::begin (out),
floor_func);
return out;
}
}
#endif