181 lines
5.0 KiB
C++
181 lines
5.0 KiB
C++
/*
|
|
* This file is part of libgim.
|
|
*
|
|
* libgim is free software: you can redistribute it and/or modify it under the
|
|
* terms of the GNU General Public License as published by the Free Software
|
|
* Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Copyright 2011-2012 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#include "matrix.hpp"
|
|
|
|
#include "debug.hpp"
|
|
|
|
#include <cstring>
|
|
|
|
using namespace util;
|
|
|
|
|
|
void
|
|
matrix::scale (double x, double y, double z) {
|
|
CHECK_HARD (is_affine ());
|
|
values[0][0] *= x;
|
|
values[1][1] *= y;
|
|
values[2][2] *= z;
|
|
}
|
|
|
|
|
|
void
|
|
matrix::translate (double x, double y, double z) {
|
|
CHECK_HARD (is_affine ());
|
|
values[0][3] += x;
|
|
values[1][3] += y;
|
|
values[2][3] += z;
|
|
}
|
|
|
|
|
|
matrix
|
|
matrix::inverse (void) const {
|
|
return matrix(*this).invert ();
|
|
}
|
|
|
|
|
|
matrix&
|
|
matrix::invert (void) {
|
|
CHECK_HARD (is_affine ());
|
|
|
|
// inv ([ M b ] == [ inv(M) -inv(M).b ]
|
|
// [ 0 1 ]) [ 0 1
|
|
|
|
// Invert the 3x3 M
|
|
double A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
|
|
double B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
|
|
double C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
|
|
|
|
double D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
|
|
double E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
|
|
double F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
|
|
|
|
double G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
|
|
double H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
|
|
double K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
|
|
|
|
double det = values[0][0] * A + values[0][1] * B + values[0][2] * C;
|
|
CHECK_NEQ (det, 0.0);
|
|
|
|
values[0][0] = A / det;
|
|
values[0][1] = D / det;
|
|
values[0][2] = G / det;
|
|
values[1][0] = B / det;
|
|
values[1][1] = E / det;
|
|
values[1][2] = H / det;
|
|
values[2][0] = C / det;
|
|
values[2][1] = F / det;
|
|
values[2][2] = K / det;
|
|
|
|
// Multiply the b
|
|
double b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
|
|
double b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
|
|
double b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
|
|
|
|
values[0][3] = b0;
|
|
values[1][3] = b1;
|
|
values[2][3] = b2;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
matrix
|
|
matrix::operator* (const matrix &rhs) const {
|
|
matrix m;
|
|
memset (m.values, 0, sizeof (m.values));
|
|
|
|
for (unsigned i = 0; i < 4; ++i)
|
|
for (unsigned j = 0; j < 4; ++j)
|
|
for (unsigned k = 0; k < 4; ++k)
|
|
m.values[i][j] += values[i][k] * rhs.values[k][j];
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
util::point<3>
|
|
matrix::to_local (const util::point<3> &p) const {
|
|
CHECK_SOFT (is_affine ());
|
|
|
|
return { p.x * values[0][0] +
|
|
p.y * values[0][1] +
|
|
p.z * values[0][2] + values[0][3],
|
|
p.x * values[1][0] +
|
|
p.y * values[1][1] +
|
|
p.z * values[1][2] + values[1][3],
|
|
p.x * values[2][0] +
|
|
p.y * values[2][1] +
|
|
p.z * values[2][2] + values[2][3] };
|
|
}
|
|
|
|
|
|
util::point<3>
|
|
matrix::to_global (const util::point<3> &p) const {
|
|
return inverse ().to_local (p);
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
matrix::is_affine (void) const {
|
|
return exactly_equal (values[3][0], 0.0) &&
|
|
exactly_equal (values[3][1], 0.0) &&
|
|
exactly_equal (values[3][2], 0.0) &&
|
|
exactly_equal (values[3][3], 1.0);
|
|
}
|
|
|
|
|
|
const matrix
|
|
matrix::IDENTITY = { { { 1.0, 0.0, 0.0, 0.0 },
|
|
{ 0.0, 1.0, 0.0, 0.0 },
|
|
{ 0.0, 0.0, 1.0, 0.0 },
|
|
{ 0.0, 0.0, 0.0, 1.0 } } };
|
|
|
|
|
|
const matrix
|
|
matrix::ZEROES = { { { 0.0, 0.0, 0.0, 0.0 },
|
|
{ 0.0, 0.0, 0.0, 0.0 },
|
|
{ 0.0, 0.0, 0.0, 0.0 },
|
|
{ 0.0, 0.0, 0.0, 0.0 } } };
|
|
|
|
|
|
std::ostream&
|
|
operator<< (std::ostream &os, const matrix &m) {
|
|
os << "{ {" << m.values[0][0] << ", "
|
|
<< m.values[0][1] << ", "
|
|
<< m.values[0][2] << ", "
|
|
<< m.values[0][3] << "}, "
|
|
<< "{" << m.values[1][0] << ", "
|
|
<< m.values[1][1] << ", "
|
|
<< m.values[1][2] << ", "
|
|
<< m.values[1][3] << "}, "
|
|
<< "{" << m.values[2][0] << ", "
|
|
<< m.values[2][1] << ", "
|
|
<< m.values[2][2] << ", "
|
|
<< m.values[2][3] << "}, "
|
|
<< "{" << m.values[3][0] << ", "
|
|
<< m.values[3][1] << ", "
|
|
<< m.values[3][2] << ", "
|
|
<< m.values[3][3] << "} }";
|
|
|
|
return os;
|
|
}
|
|
|