libcruft-util/tools/noise.cpp

397 lines
12 KiB
C++

#include "image.hpp"
#include "noise.hpp"
#include "noise/fractal/fbm.hpp"
#include "noise/fractal/hetero.hpp"
#include "noise/fractal/hmf.hpp"
#include "noise/fractal/rmf.hpp"
#include "noise/fractal/runtime.hpp"
#include "noise/lerp.hpp"
#include "noise/basis/constant.hpp"
#include "noise/basis/value.hpp"
#include "noise/basis/perlin.hpp"
#include "noise/basis/worley.hpp"
#include "noise/turbulence.hpp"
#include "noise/basis/runtime.hpp"
#include "extent.hpp"
#include "colour.hpp"
#include "netpbm.hpp"
#include "types.hpp"
#include "cmdopt.hpp"
#include "region.hpp"
#include "random.hpp"
///////////////////////////////////////////////////////////////////////////////
template struct util::noise::fractal::fbm<float, util::noise::basis::perlin<float,util::lerp::cubic>>;
template struct util::noise::fractal::hmf<float, util::noise::basis::value<float,util::lerp::cubic>>;
template struct util::noise::fractal::rmf<float, util::noise::basis::constant<float>>;
template struct util::noise::fractal::hetero<float, util::noise::basis::worley<float,2>>;
///////////////////////////////////////////////////////////////////////////////
enum basis_t {
VALUE,
PERLIN,
WORLEY
};
//-----------------------------------------------------------------------------
enum fractal_t {
FBM,
HMF,
RMF,
HETERO,
};
//-----------------------------------------------------------------------------
enum lerp_t {
LINEAR,
CUBIC,
QUINTIC,
COSINE,
TRUNC
};
//-----------------------------------------------------------------------------
std::istream&
operator>> (std::istream &is, basis_t &b)
{
std::string name;
is >> name;
b = name == "value" ? VALUE :
name == "perlin" ? PERLIN :
name == "worley" ? WORLEY :
(is.setstate (std::istream::failbit), b);
return is;
}
//-----------------------------------------------------------------------------
std::ostream&
operator<< (std::ostream &os, basis_t b)
{
switch (b) {
case VALUE: os << "value"; return os;
case PERLIN: os << "perlin"; return os;
case WORLEY: os << "worley"; return os;
default:
unreachable ();
}
}
//-----------------------------------------------------------------------------
std::istream&
operator>> (std::istream &is, fractal_t &f)
{
std::string name;
is >> name;
f = name == "fbm" ? FBM :
name == "hmf" ? HMF :
name == "rmf" ? RMF :
name == "hetero" ? HETERO :
(is.setstate (std::istream::failbit), f);
return is;
}
//-----------------------------------------------------------------------------
std::ostream&
operator<< (std::ostream &os, fractal_t f)
{
switch (f) {
case FBM: os << "fbm"; return os;
case HMF: os << "hmf"; return os;
case RMF: os << "rmf"; return os;
case HETERO: os << "hetero"; return os;
default:
unreachable ();
};
}
//-----------------------------------------------------------------------------
std::istream&
operator>> (std::istream &is, lerp_t &l)
{
std::string name;
is >> name;
l = name == "linear" ? LINEAR :
name == "cubic" ? CUBIC :
name == "quintic" ? QUINTIC :
name == "cosine" ? COSINE :
name == "trunc" ? TRUNC :
(is.setstate (std::istream::failbit), l);
return is;
}
//-----------------------------------------------------------------------------
std::ostream&
operator<< (std::ostream &os, lerp_t &l)
{
switch (l) {
case LINEAR: os << "linear"; return os;
case CUBIC: os << "cubic"; return os;
case QUINTIC: os << "quintic"; return os;
case COSINE: os << "cosine"; return os;
case TRUNC: os << "trunc"; return os;
default:
unreachable ();
}
}
void
diamond (util::image::buffer<float> &img, util::region2u target, float scale, float persistence)
{
}
void
midpoint (util::image::buffer<float> &img, util::region2u target, float scale, float persistence)
{
CHECK_GE (target.area (), 9);
auto w = target.w;
auto h = target.h;
// 0--1
// | |
// 2--3
auto v0 = img[target.p+util::vector2u{0, 0 }];
auto v1 = img[target.p+util::vector2u{w-1,0 }];
auto v2 = img[target.p+util::vector2u{0, h-1}];
auto v3 = img[target.p+util::vector2u{w-1,h-1}];
// do the centre
auto avg = (v0 + v1 + v2 + v3) / 4;
auto val = avg + scale * (util::random<float> () * 2 - 1);
auto pos = target.p + target.e / 2;
img[pos] = val;
// average the sides
auto p01 = target.p + util::vector2u{w/2, 0};
auto p13 = target.p + util::vector2u{w-1, h/2};
auto p32 = target.p + util::vector2u{w/2, h -1};
auto p20 = target.p + util::vector2u{0, h/2};
img[p01] = (v0 + v1) / 2;
img[p13] = (v1 + v3) / 2;
img[p32] = (v3 + v2) / 2;
img[p20] = (v2 + v0) / 2;
// recurse
if (target.area () > 9) {
auto e = target.e / 2 + 1;
midpoint (img, {target.p + util::vector2u{ 0, 0 }, e}, scale * persistence, persistence);
midpoint (img, {target.p + util::vector2u{ w/2, 0 }, e}, scale * persistence, persistence);
midpoint (img, {target.p + util::vector2u{ 0, h/2 }, e}, scale * persistence, persistence);
midpoint (img, {target.p + util::vector2u{ w/2, h/2 }, e}, scale * persistence, persistence);
}
}
///////////////////////////////////////////////////////////////////////////////
int
main (int argc, char **argv)
{
//{
// util::extent2u size { 1025 };
// util::image::buffer<float> img (size);
// img[{0, 0}] = 0.7f;
// img[{0, size.w-1}] = 0.1f;
// img[{size.h-1, 0}] = 0.5f;
// img[{size.h-1, size.w-1}] = 0.2f;
// midpoint (img, { {0, 0}, size }, 1, 0.65f);
// auto range = std::minmax_element (img.begin (), img.end ());
// auto offset = *range.first;
// auto div = *range.second - *range.first;
// std::cerr << "range: [" << *range.first << ", " << *range.second << "]\n";
// std::transform (img.begin (), img.end (), img.begin (), [offset,div] (auto i) { return (i - offset) / div; });
// util::pgm::write (img.cast<uint8_t> (), std::cout);
//}
//return 0;
#ifndef ENABLE_DEBUGGING
if (isatty (fileno (stdout))) {
std::cerr << "cowardly refusing to dump binary data to console\n";
return EXIT_FAILURE;
}
#endif
// setup default variables
#ifdef ENABLE_DEBUGGING
util::extent2u res {320, 240};
#else
util::extent2u res {1920, 1080};
#endif
uint64_t seed = time (nullptr);
basis_t basis = PERLIN;
fractal_t fractal = FBM;
lerp_t lerp = QUINTIC;
unsigned octaves = 8;
float H;
float scale = 1.f;
float turbulence = 0.f;
unsigned single = 0;
// fill variables from arguments
util::cmdopt::parser args;
args.add<util::cmdopt::option::value<size_t>> ('w', "width", "output image width", res.w);
args.add<util::cmdopt::option::value<size_t>> ('h', "height", "output image height", res.h);
args.add<util::cmdopt::option::value<uint64_t>> ('s', "seed", "random seed", seed);
args.add<util::cmdopt::option::value<basis_t>> ('b', "basis", "primary basis function", basis);
args.add<util::cmdopt::option::value<fractal_t>> ('f', "fractal", "primary fractal function", fractal);
args.add<util::cmdopt::option::value<lerp_t>> ('l', "lerp", "interpolation algorithm", lerp);
args.add<util::cmdopt::option::value<unsigned>> ('o', "octaves", "total fractal iterations", octaves);
args.add<util::cmdopt::option::count<unsigned>> ('1', "single", "single octave", single);
args.add<util::cmdopt::option::value<float>> ('H', "hurst", "Hurst exponent", H);
args.add<util::cmdopt::option::value<float>> ('x', "scale", "frequency multiplier", scale);
args.add<util::cmdopt::option::value<float>> ('t', "turbulence","turbulence scale", turbulence);
args.scan (argc, argv);
util::noise::turbulence<
float,
util::noise::fractal::runtime<
float,
util::noise::basis::runtime<float>
>,
util::noise::fractal::fbm<
float,
util::noise::basis::perlin<
float,
util::lerp::cubic
>
>
> t (seed, { turbulence, turbulence });
auto &f = t.data;
switch (fractal) {
using namespace util::noise;
case FBM: f.reset<fractal::fbm <float,basis::runtime<float>>> (seed); break;
case HMF: f.reset<fractal::hmf <float,basis::runtime<float>>> (seed); break;
case RMF: f.reset<fractal::rmf <float,basis::runtime<float>>> (seed); break;
case HETERO: f.reset<fractal::hetero<float,basis::runtime<float>>> (seed); break;
default:
unreachable ();
}
auto &b = f.basis ();
switch (basis) {
using namespace util::noise;
case PERLIN: {
switch (lerp) {
case LINEAR: b.reset<basis::perlin<float,util::lerp::linear>> (seed); break;
case CUBIC: b.reset<basis::perlin<float,util::lerp::cubic>> (seed); break;
case QUINTIC: b.reset<basis::perlin<float,util::lerp::quintic>> (seed); break;
case COSINE: b.reset<basis::perlin<float,util::lerp::cosine>> (seed); break;
case TRUNC: b.reset<basis::perlin<float,util::lerp::trunc>> (seed); break;
default:
unreachable ();
}
break;
}
case VALUE: {
switch (lerp) {
case LINEAR: b.reset<basis::value<float,util::lerp::linear>> (seed); break;
case CUBIC: b.reset<basis::value<float,util::lerp::cubic>> (seed); break;
case QUINTIC: b.reset<basis::value<float,util::lerp::quintic>> (seed); break;
case COSINE: b.reset<basis::value<float,util::lerp::cosine>> (seed); break;
case TRUNC: b.reset<basis::value<float,util::lerp::trunc>> (seed); break;
default:
unreachable ();
}
break;
}
case WORLEY: {
b.reset<util::noise::basis::worley<float>> (seed);
break;
}
default:
unreachable ();
}
t.seed (seed);
f.octaves (octaves);
f.frequency (scale / res.w);
t.perturb[0].frequency ( scale / res.w);
t.perturb[1].frequency ( scale / res.w);
util::image::buffer<float> img (res);
// XXX: offset slightly to avoid origin artefacts in some basis functions
static const auto OFFSET = util::vector2f { -100 };
{
for (size_t y = 0; y < res.h; ++y)
for (size_t x = 0; x < res.w; ++x)
img.data ()[y * img.s + x] = t (util::point2f {float (x), float (y)} + OFFSET);
}
// working on the assumption that all octave images are based on summation,
// subtract the image with one less octave from our current image to leave
// us with the highest octave contribution only. this is hideously
// inefficient, but it's not an operation we care about in general.
if (single && f.octaves () != 1) {
auto oldoctaves = f.octaves ();
f.octaves (oldoctaves - 1);
auto prev = img.clone ();
for (size_t y = 0; y < res.h; ++y)
for (size_t x = 0; x < res.w; ++x)
prev.data ()[y * img.s + x] = t (util::point2f {float (x), float (y)} + OFFSET);
CHECK_EQ (img.stride (), prev.stride ());
for (size_t i = 0; i < img.size (); ++i)
img[i] -= prev[i];
f.octaves (oldoctaves);
}
// rescale into the range [0, 1]
auto range = std::minmax_element (img.begin (), img.end ());
auto offset = *range.first;
auto div = *range.second - *range.first;
std::transform (img.begin (), img.end (), img.begin (), [offset,div] (auto i) { return (i - offset) / div; });
// write the images to disk
util::pgm::write (img.cast<uint8_t> (), std::cout);
}