175 lines
4.8 KiB
C++
175 lines
4.8 KiB
C++
/*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* Copyright 2015-2018 Danny Robson <danny@nerdcruft.net>
|
|
*/
|
|
|
|
#ifndef __UTIL_GEOM_ELLIPSE_HPP
|
|
#define __UTIL_GEOM_ELLIPSE_HPP
|
|
|
|
#include "fwd.hpp"
|
|
|
|
#include "../view.hpp"
|
|
#include "../point.hpp"
|
|
#include "../vector.hpp"
|
|
|
|
#include <cstdlib>
|
|
#include <random>
|
|
#include <iosfwd>
|
|
|
|
|
|
namespace util::geom {
|
|
///////////////////////////////////////////////////////////////////////////
|
|
template <size_t S, typename ValueT>
|
|
struct ellipse {
|
|
// the centre point of the ellipsoid
|
|
util::point<S,ValueT> origin;
|
|
|
|
// the distance from the centre along each axis to the shape's edge
|
|
util::vector<S,ValueT> radius;
|
|
|
|
// the orientation of up for the shape
|
|
util::vector<S,ValueT> up;
|
|
};
|
|
|
|
using ellipse2f = ellipse<2,float>;
|
|
using ellipse3f = ellipse<3,float>;
|
|
|
|
|
|
template <size_t S, typename T>
|
|
bool
|
|
intersects (ellipse<S,T>, point<S,T>);
|
|
|
|
|
|
/// returns the approximate surface area of the ellipse
|
|
///
|
|
/// the general form involves _substantially_ more expensive and
|
|
/// complicated maths which is prohibitive right now.
|
|
///
|
|
/// the relative error should be at most 1.061%
|
|
inline float
|
|
area (ellipse3f self)
|
|
{
|
|
auto const semiprod = self.radius * self.radius.indices<1,2,0> ();
|
|
auto const semipow = pow (semiprod, 1.6f);
|
|
|
|
return 4 * pi<float> * std::pow (sum (semipow) / 3, 1/1.6f);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T
|
|
area (ellipse<2,T> self)
|
|
{
|
|
return pi<T> * product (self.radius);
|
|
}
|
|
|
|
|
|
template <size_t S, typename T>
|
|
T
|
|
volume (ellipse<S,T> self)
|
|
{
|
|
return 4 / T{3} * pi<T> * product (self.radius);
|
|
}
|
|
|
|
|
|
template <size_t DimensionV, typename ValueT>
|
|
point<DimensionV,ValueT>
|
|
project (
|
|
ray<DimensionV,ValueT>,
|
|
ellipse<DimensionV,ValueT>
|
|
);
|
|
|
|
|
|
/// returns the distance along a ray to the surface of an ellipse.
|
|
///
|
|
/// returns infinity if there is no intersection
|
|
template <size_t DimensionV, typename ValueT>
|
|
ValueT
|
|
distance (
|
|
ray<DimensionV,ValueT>,
|
|
ellipse<DimensionV,ValueT>
|
|
);
|
|
|
|
|
|
// generate a covering ellipsoid for an arbitrary set of points
|
|
//
|
|
// this isn't guaranteed to be optimal in any specific sense. but it
|
|
// ought not be outrageously inefficient...
|
|
ellipse3f
|
|
cover (util::view<const point3f*>);
|
|
|
|
|
|
/// returns a point that is uniformly distributed about the ellipse
|
|
/// surface.
|
|
///
|
|
/// NOTE: I don't have a strong proof that the below is in fact properly
|
|
/// uniformly distributed, so if you need a strong guarantee for your work
|
|
/// then it might not be the best option. But visual inspection appears to
|
|
/// confirm there aren't obvious patterns.
|
|
///
|
|
/// the concept was taken from: https://math.stackexchange.com/a/2514182
|
|
template <typename RandomT>
|
|
util::point3f
|
|
sample_surface (ellipse3f self, RandomT &generator)
|
|
{
|
|
const auto [a, b, c] = self.radius;
|
|
const auto a2 = a * a;
|
|
const auto b2 = b * b;
|
|
const auto c2 = c * c;
|
|
|
|
// generate a direction vector from a normally distributed random variable
|
|
auto const x = std::normal_distribution<float> (0, a2) (generator);
|
|
auto const y = std::normal_distribution<float> (0, b2) (generator);
|
|
auto const z = std::normal_distribution<float> (0, c2) (generator);
|
|
|
|
// find the distance to the surface along the direction vector
|
|
auto const d = std::sqrt (x * x / a2 + y * y / b2 + z * z / c2);
|
|
|
|
return self.origin + util::vector3f {x,y,z} / d;
|
|
}
|
|
|
|
|
|
template <size_t S, typename T>
|
|
std::ostream&
|
|
operator<< (std::ostream&, ellipse<S,T>);
|
|
}
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
#include "sample.hpp"
|
|
|
|
#include <cmath>
|
|
#include <random>
|
|
|
|
namespace util::geom {
|
|
template <typename T, template <size_t,typename> class K, typename G>
|
|
struct sampler<2,T,K,G>
|
|
{
|
|
static util::point<2,T> fn (K<2,T> k, G &g)
|
|
{
|
|
std::uniform_real_distribution<T> dist;
|
|
|
|
float phi = dist (g) * 2 * pi<T>;
|
|
float rho = std::sqrt (dist (g));
|
|
|
|
return util::point<2,T> {
|
|
std::cos (phi),
|
|
std::sin (phi)
|
|
} * rho * k.radius + k.origin.template as<util::vector> ();
|
|
}
|
|
};
|
|
}
|
|
|
|
#endif
|