libcruft-util/noise/basis/patch.ipp

189 lines
5.7 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
*/
#if defined(__UTIL_NOISE_BASIS_PATCH_IPP)
#error
#endif
#define __UTIL_NOISE_BASIS_PATCH_IPP
#include "../../types.hpp"
#include "../../ray.hpp"
#include "../../vector.hpp"
#include "../../maths/fast.hpp"
namespace util { namespace noise { namespace basis {
///////////////////////////////////////////////////////////////////////////
template <typename T>
patch<T>::patch (seed_t _seed, T _width):
m_width (_width),
m_power (exactly_zero (_width)
? std::numeric_limits<T>::infinity ()
: std::log (THRESHOLD) / std::log (1 - _width)),
m_seed (_seed)
{ ; }
///////////////////////////////////////////////////////////////////////////
template <typename T>
range<T>
patch<T>::bounds (void) const
{
return { T{0}, T{1} };
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
T
patch<T>::operator () (point2<T> p) const
{
// extract integer and fractional parts. be careful to always round down
// (particularly with negatives) and avoid rounding errors.
auto p_int = p.template cast<intmax_t> ();
if (p.x < 0) p_int.x -= 1;
if (p.y < 0) p_int.y -= 1;
auto p_rem = (p - p_int).template as<point> ();
static const util::vector2i OFFSETS[] = {
{ 0, -2 },
{ -1, -1 }, { 0, -1 }, { 1, -1 },
{ -2, 0 }, { -1, 0 }, { 0, 0 }, { 1, 0 }, { 2, 0 },
{ -1, 1 }, { 0, 1 }, { 1, 1 },
{ 0, 2 },
};
static const size_t COUNT = elems (OFFSETS);
// find the distances to each neighbour's centroid
util::point2<T> centres[COUNT];
for (size_t i = 0; i < COUNT; ++i)
centres[i] = centroid (p_int + OFFSETS[i]) + OFFSETS[i];
T distances[COUNT];
for (size_t i = 0; i < COUNT; ++i)
distances[i] = maths::fast::sqrt (util::distance2 (p_rem, centres[i]));
// sort the distances, using indices so we can use 'offsets' to generate values
unsigned indices[COUNT];
std::iota (std::begin (indices), std::end (indices), 0);
std::sort (std::begin (indices),
std::end (indices),
[&] (auto a, auto b) {
return distances[a] < distances[b];
});
// calculate normalisation constants for the 9 nearest points. the
// neighbourhood size is implicitly specified by the 1.5 unit maximum
// distance.
constexpr auto MAX_DISTANCE = 2.1213203435596424f; // std::hypot (1.5f, 1.5f);
const auto lo = distances[indices[0]];
const auto hi = std::min (distances[indices[COUNT-1]], MAX_DISTANCE);
T out = 0.f;
T sumw = 0.f;
// sum the weight values of each neighbour. weight by a function of
// the distance. we use an power function which allows a known width
// to blend.
for (size_t i = 0; i < COUNT && distances[indices[i]] <= MAX_DISTANCE; ++i)
{
auto v = generate (p_int + OFFSETS[indices[i]]);
auto d = (distances[indices[i]] - lo) / (hi - lo);
auto w = maths::fast::pow (1-d, m_power);
sumw += w;
out += v * w;
}
return out / sumw;
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
seed_t
patch<T>::seed (void) const
{
return m_seed;
}
//-------------------------------------------------------------------------
template <typename T>
seed_t
patch<T>::seed (util::noise::seed_t _seed)
{
return m_seed = _seed;
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
T
patch<T>::width (void) const
{
return m_width;
}
//-------------------------------------------------------------------------
template <typename T>
T
patch<T>::width (T _width)
{
m_width = _width;
m_power = exactly_zero (_width)
? std::numeric_limits<T>::infinity ()
: std::log (THRESHOLD) / std::log (1 - _width);
return m_width;
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
util::point2<T>
patch<T>::centroid (util::point2i p) const
{
using util::hash::murmur2::mix;
auto u = mix (m_seed, mix (uint64_t (p.x), uint64_t (p.y)));
auto v = mix (u, m_seed);
auto r = util::point<2,T> {
(u & 0xffff) / T{0xffff},
(v & 0xffff) / T{0xffff}
};
CHECK_LIMIT (r, T{0}, T{1});
return r;
}
//-------------------------------------------------------------------------
template <typename T>
T
patch<T>::generate (util::point2i p) const
{
using util::hash::murmur2::mix;
auto u = mix (m_seed, mix (uint64_t (p.x), uint64_t (p.y)));
return (u & 0xffff) / T{0xffff};
}
} } }