libcruft-util/matrix.cpp

589 lines
18 KiB
C++

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2011-2015 Danny Robson <danny@nerdcruft.net>
*/
#include "matrix.hpp"
#include "point.hpp"
#include "debug.hpp"
#include <cstring>
#include <cmath>
using namespace util;
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::transposed (void) const
{
matrix<S,T> m;
for (size_t i = 0; i < S; ++i)
for (size_t j = 0; j < S; ++j)
m.values[i][j] = values[j][i];
return m;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>&
matrix<S,T>::transpose (void)
{
for (size_t i = 0; i < S; ++i)
for (size_t j = i + 1; j < S; ++j)
std::swap (values[i][j], values[j][i]);
return *this;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::inverse (void) const {
static_assert (S == 4, "assuming 4x4 matrices");
// GLM's implementation of 4x4 matrix inversion. Should allow use of
// vector instructions.
const auto &m = values;
T Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
vector<4,T> Fac0(Coef00, Coef00, Coef02, Coef03);
vector<4,T> Fac1(Coef04, Coef04, Coef06, Coef07);
vector<4,T> Fac2(Coef08, Coef08, Coef10, Coef11);
vector<4,T> Fac3(Coef12, Coef12, Coef14, Coef15);
vector<4,T> Fac4(Coef16, Coef16, Coef18, Coef19);
vector<4,T> Fac5(Coef20, Coef20, Coef22, Coef23);
vector<4,T> Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
vector<4,T> Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
vector<4,T> Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
vector<4,T> Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
vector<4,T> Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
vector<4,T> Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
vector<4,T> Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
vector<4,T> Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
vector<4,T> SignA(+1, -1, +1, -1);
vector<4,T> SignB(-1, +1, -1, +1);
//matrix<T> Inverse(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB);
matrix<4,T> Inverse = { { { Inv0.x * SignA.x, Inv0.y * SignA.y, Inv0.z * SignA.z, Inv0.w * SignA.w },
{ Inv1.x * SignB.x, Inv1.y * SignB.y, Inv1.z * SignB.z, Inv1.w * SignB.w },
{ Inv2.x * SignA.x, Inv2.y * SignA.y, Inv2.z * SignA.z, Inv2.w * SignA.w },
{ Inv3.x * SignB.x, Inv3.y * SignB.y, Inv3.z * SignB.z, Inv3.w * SignB.w } } };
vector<4,T> Row0(Inverse.values[0][0], Inverse.values[1][0], Inverse.values[2][0], Inverse.values[3][0]);
vector<4,T> Dot0(
m[0][0] * Row0.x,
m[0][1] * Row0.y,
m[0][2] * Row0.z,
m[0][3] * Row0.w
);
T Dot1 = (Dot0.x + Dot0.y) + (Dot0.z + Dot0.w);
T OneOverDeterminant = static_cast<T>(1) / Dot1;
return Inverse * OneOverDeterminant;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>&
matrix<S,T>::invert (void) {
return *this = inverse ();
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::inverse_affine (void) const {
return matrix<S,T>(*this).invert_affine ();
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>&
matrix<S,T>::invert_affine (void) {
CHECK (is_affine ());
// inv ([ M b ] == [ inv(M) -inv(M).b ]
// [ 0 1 ]) [ 0 1 ]
// Invert the 3x3 M
T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
T d = values[0][0] * A + values[0][1] * B + values[0][2] * C;
CHECK_NEQ (d, 0.0);
values[0][0] = A / d;
values[0][1] = D / d;
values[0][2] = G / d;
values[1][0] = B / d;
values[1][1] = E / d;
values[1][2] = H / d;
values[2][0] = C / d;
values[2][1] = F / d;
values[2][2] = K / d;
// Multiply the b
T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
values[0][3] = b0;
values[1][3] = b1;
values[2][3] = b2;
return *this;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
T
matrix<S,T>::det (void) const {
return values[0][3] * values[1][2] * values[2][1] * values[3][0] -
values[0][2] * values[1][3] * values[2][1] * values[3][0] -
values[0][3] * values[1][1] * values[2][2] * values[3][0] +
values[0][1] * values[1][3] * values[2][2] * values[3][0] +
values[0][2] * values[1][1] * values[2][3] * values[3][0] -
values[0][1] * values[1][2] * values[2][3] * values[3][0] -
values[0][3] * values[1][2] * values[2][0] * values[3][1] +
values[0][2] * values[1][3] * values[2][0] * values[3][1] +
values[0][3] * values[1][0] * values[2][2] * values[3][1] -
values[0][0] * values[1][3] * values[2][2] * values[3][1] -
values[0][2] * values[1][0] * values[2][3] * values[3][1] +
values[0][0] * values[1][2] * values[2][3] * values[3][1] +
values[0][3] * values[1][1] * values[2][0] * values[3][2] -
values[0][1] * values[1][3] * values[2][0] * values[3][2] -
values[0][3] * values[1][0] * values[2][1] * values[3][2] +
values[0][0] * values[1][3] * values[2][1] * values[3][2] +
values[0][1] * values[1][0] * values[2][3] * values[3][2] -
values[0][0] * values[1][1] * values[2][3] * values[3][2] -
values[0][2] * values[1][1] * values[2][0] * values[3][3] +
values[0][1] * values[1][2] * values[2][0] * values[3][3] +
values[0][2] * values[1][0] * values[2][1] * values[3][3] -
values[0][0] * values[1][2] * values[2][1] * values[3][3] -
values[0][1] * values[1][0] * values[2][2] * values[3][3] +
values[0][0] * values[1][1] * values[2][2] * values[3][3];
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::operator* (const matrix<S,T> &rhs) const {
matrix<S,T> m;
for (unsigned row = 0; row < S; ++row) {
for (unsigned col = 0; col < S; ++col) {
m.values[row][col] = T {0};
for (unsigned inner = 0; inner < S; ++inner)
m.values[row][col] += values[row][inner] * rhs.values[inner][col];
}
}
return m;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>&
matrix<S,T>::operator*=(const matrix<S,T> &rhs) {
return *this = *this * rhs;
}
///////////////////////////////////////////////////////////////////////////////
//template <size_t S, typename T>
//vector<3,T>
//matrix<S,T>::operator* (vector<3,T> v) const
//{
// return (
// *this * v.template homog<S> ()
// ).template redim<3> ();
//}
//
//
////-----------------------------------------------------------------------------
//template <size_t S, typename T>
//point<3,T>
//matrix<S,T>::operator* (point<3,T> p) const
//{
// return (*this * p.template homog<S> ()).template redim<3> ();
//}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
vector<S,T>
matrix<S,T>::operator* (const vector<S,T> &rhs) const {
return vector<S,T> {
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w,
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
};
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
point<S,T>
matrix<S,T>::operator* (const point<S,T> &rhs) const
{
return point<S,T> {
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w,
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
};
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::operator* (T f) const
{
matrix<S,T> out;
for (size_t i = 0; i < S; ++i)
for (size_t j = 0; j < S; ++j)
out.values[i][j] = values[i][j] * f;
return out;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>&
matrix<S,T>::operator*= (T f){
for (size_t i = 0; i < S; ++i)
for (size_t j = 0; j < S; ++j)
values[i][j] *= f;
return *this;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::operator/ (T s) const {
matrix<S,T> m;
for (size_t r = 0; r < m.rows; ++r)
for (size_t c = 0; c < m.cols; ++c)
m.values[r][c] = values[r][c] / s;
return m;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>&
matrix<S,T>::operator/= (T s) {
for (size_t r = 0; r < rows; ++r)
for (size_t c = 0; c < cols; ++c)
values[r][c] /= s;
return *this;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
bool
matrix<S,T>::operator== (const matrix<S,T> &rhs) const {
for (size_t r = 0; r < rows; ++r)
for (size_t c = 0; c < cols; ++c)
if (!almost_equal (rhs.values[r][c], values[r][c]))
return false;
return true;
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
bool
matrix<S,T>::is_affine (void) const {
return exactly_equal (values[3][0], T {0}) &&
exactly_equal (values[3][1], T {0}) &&
exactly_equal (values[3][2], T {0}) &&
exactly_equal (values[3][3], T {1});
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::ortho (T left, T right,
T bottom, T top,
T near, T far)
{
CHECK_GT (far, near);
T tx = - (right + left) / (right - left);
T ty = - (top + bottom) / (top - bottom);
T tz = - (far + near) / (far - near);
T rl = 2 / (right - left);
T tb = 2 / (top - bottom);
T fn = 2 / (far - near);
return { {
{ rl, 0, 0, tx },
{ 0, tb, 0, ty },
{ 0, 0, fn, tz },
{ 0, 0, 0, 1 },
} };
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::ortho2D (T left, T right,
T bottom, T top)
{
return ortho (left, right, bottom, top, -1, 1);
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::perspective (T fov, T aspect, T near, T far)
{
T f = std::tan (fov / 2);
T tx = 1 / (f * aspect);
T ty = 1 / f;
T z1 = (far + near) / (near - far);
T z2 = (2 * far * near) / (near - far);
return { {
{ tx, 0, 0, 0 },
{ 0, ty, 0, 0 },
{ 0, 0, z1, z2 },
{ 0, 0, -1, 0 }
} };
}
//-----------------------------------------------------------------------------
// Emulates gluLookAt
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::look_at (util::point<3,T> eye,
util::point<3,T> centre,
util::vector<3,T> up)
{
const auto f = (centre - eye).normalise ();
const auto s = cross (f, up).normalise ();
const auto u = cross (s, f);
return { {
{ s.x, s.y, s.z, -dot (s, eye) },
{ u.x, u.y, u.z, -dot (u, eye) },
{ -f.x, -f.y, -f.z, dot (f, eye) },
{ 0, 0, 0, 1 },
} };
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::translate (util::vector<2,T> v)
{
return translate ({v.x, v.y, 0});
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::translate (util::vector<3,T> v)
{
return { {
{ 1.f, 0.f, 0.f, v.x },
{ 0.f, 1.f, 0.f, v.y },
{ 0.f, 0.f, 1.f, v.z },
{ 0.f, 0.f, 0.f, 1.f },
} };
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::scale (T mag)
{
return scale (vector<3,T> (mag));
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::scale (util::vector<3,T> v)
{
return { {
{ v.x, 0.f, 0.f, 0.f },
{ 0.f, v.y, 0.f, 0.f },
{ 0.f, 0.f, v.z, 0.f },
{ 0.f, 0.f, 0.f, 1.f }
} };
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix4<T>
matrix<S,T>::rotate (T angle, util::vector<3,T> about)
{
about.normalise ();
T c = std::cos (angle);
T s = std::sin (angle);
T x = about.x,
y = about.y,
z = about.z;
return { {
{ x * x * (1 - c) + c,
x * y * (1 - c) - z * s,
x * z * (1 - c) + y * s,
0
},
{ y * x * (1 - c) + z * s,
y * y * (1 - c) + c,
y * z * (1 - c) - x * s,
0
},
{ z * x * (1 - c) - y * s,
z * y * (1 - c) + x * s,
z * z * (1 - c) + c,
0
},
{ 0, 0, 0, 1 }
} };
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
const matrix<S,T>
matrix<S,T>::IDENTITY = { { { 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 } } };
template <size_t S, typename T>
const matrix<S,T>
matrix<S,T>::ZEROES = { { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } } };
//-----------------------------------------------------------------------------
namespace util {
template struct matrix<4,float>;
template struct matrix<4,double>;
}
//-----------------------------------------------------------------------------
namespace util {
template <size_t S, typename T>
std::ostream&
operator<< (std::ostream &os, const matrix<S,T> &m) {
os << "{ {" << m.values[0][0] << ", "
<< m.values[0][1] << ", "
<< m.values[0][2] << ", "
<< m.values[0][3] << "}, "
<< "{" << m.values[1][0] << ", "
<< m.values[1][1] << ", "
<< m.values[1][2] << ", "
<< m.values[1][3] << "}, "
<< "{" << m.values[2][0] << ", "
<< m.values[2][1] << ", "
<< m.values[2][2] << ", "
<< m.values[2][3] << "}, "
<< "{" << m.values[3][0] << ", "
<< m.values[3][1] << ", "
<< m.values[3][2] << ", "
<< m.values[3][3] << "} }";
return os;
}
}
template std::ostream& util::operator<< (std::ostream&, const matrix<4,float>&);
template std::ostream& util::operator<< (std::ostream&, const matrix<4,double>&);