libcruft-util/cruft/util/coord/base.hpp

314 lines
11 KiB
C++

/*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* Copyright 2012-2019 Danny Robson <danny@nerdcruft.net>
*/
#pragma once
#include "fwd.hpp"
#include "ops.hpp"
#include "init.hpp"
#include "traits.hpp"
#include "../maths.hpp"
#include <algorithm>
#include <array>
#include <cstdlib>
#include <type_traits>
namespace cruft::coord {
/////////////////////////////////////////////////////////////////////////
// the base class for all coordinate-like types.
//
// SelfT should not be exposed as a template template directly because
// some types (eg, XYZ colours) do not conform to the same template
// parameters are others (eg, vector2f). ie, it does not make sense to
// allow redim, or type changing on some types so they just aren't exposed.
template <
std::size_t S,
typename T,
typename SelfT
>
struct base : public init<S,T,SelfT> {
static_assert (S > 0);
static_assert (std::is_arithmetic<T>::value);
static_assert (sizeof (init<S,T,SelfT>) == S * sizeof (T));
using self_t = SelfT;
using value_type = T;
static constexpr std::size_t dimension = S;
static constexpr std::size_t elements = S;
/// returns the number of elements we contain
static constexpr auto size (void) { return S; }
// constructors
using init<S,T,SelfT>::init;
/// constructs, but does not initialise, the data.
///
/// used to avoid unnecessary initialisation in many situations where
/// we have arrays of these types that are about to be overwritten. it
/// is a very important performance optimisation.
base () = default;
/// constructs an instance where all elements are initialised to `val'.
constexpr
base (T fill)
{
for (decltype(S) i = 0; i < S; ++i)
this->data[i] = fill;
}
constexpr base (const base<S,T,SelfT> &rhs) = default;
base& operator= (const base<S,T,SelfT> &rhs)& = default;
base& operator= (const T t)&
{
for (auto &v: *this)
v = t;
return *this;
}
// element accessors
constexpr T& operator[] (size_t i)& noexcept { return this->data[i]; }
constexpr T& operator[] (int i)& noexcept { return this->data[i]; }
constexpr const T& operator[] (size_t i) const& noexcept { return this->data[i]; }
constexpr const T& operator[] (int i) const& noexcept { return this->data[i]; }
auto cbegin (void) const { return std::cbegin (this->data); }
auto cend (void) const { return std::cend (this->data); }
auto begin (void) const { return std::begin (this->data); }
auto end (void) const { return std::end (this->data); }
auto begin (void) { return std::begin (this->data); }
auto end (void) { return std::end (this->data); }
const T& front (void) const { return this->data[0]; }
T& front (void) { return this->data[0]; }
const T& back (void) const { return this->data[S-1]; }
T& back (void) { return this->data[S-1]; }
///////////////////////////////////////////////////////////////////////
// conversions
template <template <std::size_t, typename> class K>
K<S,T> as (void) const
{
K<S,T> k;
std::copy (begin (), end (), k.begin ());
return k;
}
//---------------------------------------------------------------------
template <
typename K,
typename = std::enable_if_t<is_coord_v<K>,void>
>
K as (void) const
{
static_assert (K::elements == elements);
K k;
std::copy (begin (), end (), k.begin ());
return k;
}
//---------------------------------
template <typename U>
auto
cast (void) const
{
typename revalue_type<SelfT>::template type<U> out;
std::copy (std::cbegin (this->data),
std::cend (this->data),
std::begin (out.data));
return out;
}
///////////////////////////////////////////////////////////////////////
operator std::array<value_type,elements> () const
{
std::array<value_type,elements> res;
std::copy (begin (), end (), std::begin (res));
return res;
}
///////////////////////////////////////////////////////////////////////
/// returns an instance with the same data, but truncated to `D'
/// elements
///
/// explicitly does not allow a fill parameter given it can't be used
/// when reducing dimensions.
///
/// HACK,gcc#,gcc-7.x: This function _must not_ use std::copy or
/// similar algorithms to move the data as it produces an ICE on some
/// code fragements if it does. Namely:
/// "internal compiler error: in trunc_int_for_mode, at explow.c:55"
template <
size_t D,
typename = std::enable_if_t<
has_redim_v<SelfT> && S >= D,
void
>
>
auto
redim (void) const
{
redim_t<SelfT,D> out;
for (size_t i = 0; i < D; ++i)
out[i] = this->data[i];
return out;
}
//---------------------------------------------------------------------
/// returns an instance with the same data, but more elements, where
/// the new elements are initialised with values with the same index
/// in the coordinate `fill'.
///
/// explicitly requires a fill parameter so that we avoid undefined
/// values.
///
/// HACK,gcc#,gcc-7.x: This function _must not_ use std::copy or
/// similar algorithms to move the data as it produces an ICE on some
/// code fragements if it does. Namely:
/// "internal compiler error: in trunc_int_for_mode, at explow.c:55"
template<size_t D,typename _sfinae = SelfT>
std::enable_if_t<
has_redim_v<_sfinae> && S <= D,
redim_t<_sfinae,D>
>
redim (const redim_t<_sfinae,D> fill) const
{
redim_t<SelfT,D> out;
for (size_t i = 0; i < S; ++i)
out[i] = this->data[i];
for (size_t i = S; i < D; ++i)
out[i] = fill[i];
return out;
}
//---------------------------------------------------------------------
/// returns an instance with the same data, but more elements, where
/// all the new elemenst are initialised with the scalar `fill'.
///
/// explicitly requires a fill parameter so that we avoid undefined
/// values.
///
/// HACK,gcc#,gcc-7.x: This function _must not_ use std::copy or
/// similar algorithms to move the data as it produces an ICE on some
/// code fragements if it does. Namely:
/// "internal compiler error: in trunc_int_for_mode, at explow.c:55"
template <
size_t D,
typename _sfinae = SelfT
>
std::enable_if_t<
has_redim_v<_sfinae> && S <= D,
redim_t<_sfinae,D>
>
redim (T fill) const
{
redim_t<SelfT,D> out;
for (size_t i = 0; i < S; ++i)
out[i] = this->data[i];
for (size_t i = S; i < D; ++i)
out[i] = fill;
return out;
}
///////////////////////////////////////////////////////////////////////
/// Returns an instance with elements specified by the Indices
/// parameter. eg, point2f p{}.indices<0,2> would return {p.x, p.z}.
///
/// Given we don't take any arguments all indices must be valid for
/// the current object.
template <
std::size_t ...Indices,
typename = std::enable_if_t<cruft::max (Indices...) < S>
>
constexpr auto
indices (void) const
{
return redim_t<SelfT,sizeof...(Indices)> {
this->data[Indices]...
};
}
/// Return an instance of the same type where the elements of the new
/// value area specified by the Indices... template parameter.
///
/// If the index is greater than the maximum index of this type then
/// the value is taken from a pack of supplementary values.
///
/// eg, vector2f{0,1}.indices<0,2,1> (2) would result in {0,2,1}
template <
std::size_t ...Indices,
typename ...U,
typename = std::enable_if_t<
// At least one index doesn't address our current data
cruft::max (Indices...) >= S &&
// The new data type must be the old data type
(std::is_same_v<T,U> && ...)
>
>
constexpr auto
indices (U const &...supplementary) const
{
static_assert (
cruft::max (Indices...) < S + sizeof...(supplementary),
"indices must fall within the defined range for the type"
);
// Expand the pack using either:
// * data from ourselves,
// * or rebasing the index into a tuple of the supplementary values
//
// The index to std::get _must_ be valid even if we don't use the
// result (otherwise we tend to encounter static assertions). Thus
// we conditionally specify a zero index if we know it won't get
// used.
return redim_t<SelfT,sizeof...(Indices)> {
Indices < S
? this->data[Indices]
: std::get<
(Indices > S) ? Indices - S : 0
> (std::tuple (supplementary...))...
};
}
};
}
/// Invoke a macro across all typical coordinate parameter combinations.
///
/// ie, each of the types i16, i32, i64, f32, and f64; and arities of 1, 2, 3,
/// and 4.
///
/// This is useful for exhaustive delayed instantiation in .cpp files.
#define MAP_CRUFT_COORD_PARAMS(F) \
F(1,i16) F(2,i16) F(3,i16) F(4,i16) \
F(1,i32) F(2,i32) F(3,i32) F(4,i32) \
F(1,i64) F(2,i64) F(3,i64) F(4,i64) \
F(1,u16) F(2,u16) F(3,u16) F(4,u16) \
F(1,u32) F(2,u32) F(3,u32) F(4,u32) \
F(1,u64) F(2,u64) F(3,u64) F(4,u64) \
F(1,f32) F(2,f32) F(3,f32) F(4,f32) \
F(1,f64) F(2,f64) F(3,f64) F(4,f64)