#include #include #include #include #include using cruft::vector; using cruft::vector2f; /////////////////////////////////////////////////////////////////////////////// void test_polar (cruft::TAP::logger &tap) { static const struct { cruft::vector2f polar; cruft::vector2f cartesian; const char *desc; } TESTS[] { { { 0.f, 0.f }, { 0.f, 0.f }, "all zeroes" }, { { 1.f, 0.f }, { 1.f, 0.f }, "unit length, unrotated" }, { { 1.f, cruft::pi / 2.f }, { 0.f, 1.f }, "unit length, rotated" }, { { 1.f, 2 * cruft::pi }, { 1.f, 0.f }, "full rotation, unit length" } }; for (const auto &t: TESTS) { // Compare the difference of cartesian representations. Don't use // direct equality comparisons here as the numeric stability can be // poor and we have nice whole numbers to start with. auto in_cart = t.cartesian; auto to_cart = cruft::polar_to_cartesian (t.polar); tap.expect_lt (norm (in_cart - to_cart), 0.00001f, "{:s}", t.desc); // Compare polar representations. Make sure to normalise them first. auto in_polar = t.polar; auto to_polar = cruft::cartesian_to_polar (t.cartesian); in_polar[1] = std::fmod (in_polar[1], 2 * cruft::pi); to_polar[1] = std::fmod (to_polar[1], 2 * cruft::pi); tap.expect_eq (in_polar, to_polar, "{:s}", t.desc); } } /////////////////////////////////////////////////////////////////////////////// void test_euler (cruft::TAP::logger &tap) { static const struct { cruft::vector3f dir; cruft::vector2f euler; const char *name; } TESTS[] = { // y-axis { { 0, 0, -1 }, { 0.5f, 0.5f }, "forward" }, { { -1, 0, 0 }, { 0.5f, -1.0f }, "left" }, { { 0, 0, 1 }, { 0.5f, -0.5f }, "back" }, { { 1, 0, 0 }, { 0.5f, 0.0f }, "right" }, // x-axis { { 0, 1, 0 }, { 0, 0 }, "up" }, { { 0, -1, 0 }, { 1, 0 }, "down" }, }; // check that simple axis rotations look correct for (auto i: TESTS) { tap.expect_eq (cruft::to_euler (i.dir), i.euler * cruft::pi, "to euler, {:s}", i.name); } // check error in round trip through euler angles for (auto i: TESTS) { auto trip = cruft::from_euler (cruft::to_euler (i.dir)); auto diff = i.dir - trip; auto mag = norm (diff); // trig functions reduce precision above almost_equal levels, so we // hard code a fairly low bound here instead. tap.expect_lt (mag, 1e-7, "euler round-trip error, {:s}", i.name); } } /////////////////////////////////////////////////////////////////////////////// void test_spherical (cruft::TAP::logger &tap) { constexpr auto q = cruft::pi / 2.f; static constexpr struct { cruft::vector3f spherical; cruft::vector3f cartesian; const char *message; } S2C [] = { { { 1, 0 * q, 0 * q }, { 0, 0, 1 }, "+zero", }, { { 1, 2 * q, 0 * q }, { 0, 0, -1 }, "-zero", }, { { 1, 1 * q, 0 * q }, { 1, 0, 0 }, "90-theta", }, { { 1, 2 * q, 0 * q }, { 0, 0, -1 }, "180-theta", }, { { 1, 3 * q, 0 * q }, { -1, 0, 0 }, "270-theta", }, { { 1, 0 * q, 1 * q }, { 0, 0, 1 }, "90-phi", }, { { 1, 0 * q, 2 * q }, { 0, 0, 1 }, "180-phi", }, { { 1, 0 * q, 3 * q }, { 0, 0, 1 }, "270-phi", }, { { 1, 1 * q, 1 * q }, { 0, 1, 0 }, "90-theta, 90-phi" }, { { 1, 1 * q, 2 * q }, { -1, 0, 0 }, "90-theta, 180-phi" }, { { 1, 1 * q, 3 * q }, { 0, -1, 0 }, "90-theta, 270-phi" }, }; for (const auto t: S2C) { tap.expect ( all (abs (cruft::spherical_to_cartesian (t.spherical) - t.cartesian) < 1e-7f), "{:s}, spherical-cartesian", t.message ); } // double check origin points are transformed correctly. the zeros and // multiple representations need to be accounted for. tap.expect_eq ( cruft::cartesian_to_spherical (cruft::vector3f{0}).x, 0, "origin, cartesian-spherical" ); tap.expect_eq ( cruft::spherical_to_cartesian (cruft::vector3f{0,1,-1}), cruft::vector3f{0}, "origin, cartesian-spherical" ); //------------------------------------------------------------------------- // dedicated cartesian-spherical test cases. it's hard to use the // spherical-cartesian cases from above because. some of the tests don't // have unique representations in spherical space, // eg, {1,0,z} is always {0,0,1}) // so the reverse transform isn't usable as a test. static constexpr struct { cruft::vector3f cartesian; cruft::vector3f spherical; const char *message; } C2S[] = { { { 0, 0, 1 }, { 1, 0, 0 }, "+z" }, { { 0, 0, -1 }, { 1, q*2, 0 }, "-z" }, { { 0, 1, 0 }, { 1, q, q }, "+y" }, { { 0, -1, 0 }, { 1, q, -q }, "-y" }, { { 1, 0, 0 }, { 1, q, 0 }, "+x" }, { { -1, 0, 0 }, { 1, q, q*2 }, "-x" }, { { 1, 1, 1 }, { 1.732f, 0.95539f, q/2 }, "+ve" }, { { -1, -1, -1 }, { 1.732f, 2.18619942f, -2.35619f}, "-ve" }, { { 9, 9, 9 }, { 15.5885f, 0.955317f, q/2 }, "+9ve" }, }; for (const auto &t: C2S) { const auto s0 = cruft::canonical_spherical (cruft::cartesian_to_spherical (t.cartesian)); const auto s1 = cruft::canonical_spherical (t.spherical); tap.expect ( all (abs (s0 - s1) < 1e-4f), "{:s}, cartesian-spherical", t.message ); } //auto s = cruft::cartesian_to_spherical (t.cartesian); //std::clog << s << " == " << t.spherical << '\n'; //tap.expect_eq ( // cruft::cartesian_to_spherical (t.cartesian), // t.spherical, // "{:s}, cartesian-spherical", // t.message //); { //cruft::vector3f s { 1, .5f, 2/3.f }; //cruft::vector3f c { 0.35f, 0.61f, 0.71f }; //tap.expect_eq } }; /////////////////////////////////////////////////////////////////////////////// int main () { cruft::TAP::logger tap; test_polar (tap); test_euler (tap); test_spherical (tap); tap.expect (!is_normalised (cruft::vector3f::zeros ()), "zeros isn't normalised"); tap.expect (!is_normalised (cruft::vector3f::ones ()), "ones isn't normalised"); tap.expect_eq ( cruft::hypot (cruft::vector3f{0,1,2} - cruft::vector3f{3,2,4}), std::sqrt (14.f), "vector3f hypot" ); return tap.status (); }