#include "image.hpp" #include "noise.hpp" #include "noise/fractal/fbm.hpp" #include "noise/fractal/rmf.hpp" #include "noise/fractal/hmf.hpp" #include "noise/fractal/hetero.hpp" #include "noise/lerp.hpp" #include "noise/basis/constant.hpp" #include "noise/basis/value.hpp" #include "noise/basis/perlin.hpp" #include "noise/basis/worley.hpp" #include "noise/turbulence.hpp" #include "extent.hpp" #include "colour.hpp" template struct util::noise::fractal::fbm>; template struct util::noise::fractal::hmf>; template struct util::noise::fractal::rmf>; template struct util::noise::fractal::hetero>; int main (void) { // setup the output buffer util::extent2u size {1920, 1080}; util::image::buffer img (size); uint64_t seed = time (nullptr); // setup the noise generator #if 0 //util::noise::fractal::fbm> b (seed); //util::noise::fractal::rmf> b (seed); //util::noise::fractal::fbm> b (seed); //util::noise::fractal::rmf> b (seed); //util::noise::fractal::hmf> b (seed); util::noise::fractal::hetero> b (seed); b.octaves (8); b.frequency (10.f / size.w); b.lacunarity = 2.f; b.H = 1.0f; b.seed (seed); #else util::noise::turbulence< float, //util::noise::fractal::hetero>, util::noise::fractal::hetero>, util::noise::fractal::fbm> > b (seed, { 0.13f, 0.13f }); b.data.frequency (10.f / size.w); b.perturb[0].octaves (4); b.perturb[1].octaves (4); b.perturb[0].frequency (10.f / size.w); b.perturb[1].frequency (10.f / size.w); #endif // generate the values. offset positions slightly to observe simple axis issues with perlin basis { auto offset = util::vector2f { -100 }; for (size_t y = 0; y < size.h; ++y) for (size_t x = 0; x < size.w; ++x) { auto v = b (util::point2f {float (x), float (y)} + offset); img.data ()[y * size.w + x] = v; } } // rescale into the range [0, 1] auto range = std::minmax_element (img.begin (), img.end ()); auto offset = *range.first; auto div = *range.second - *range.first; std::cerr << "range: [" << *range.first << ", " << *range.second << "]\n"; std::transform (img.begin (), img.end (), img.begin (), [offset,div] (auto i) { return (i - offset) / div; }); // create a coloured map with this gradient static const struct { float scale; util::colour3u value; } GRADPOINT[] = { { 0 / 32.f, { 0, 0, 128 } }, { 12 / 32.f, { 0, 0, 255 } }, { 16 / 32.f, { 0, 128, 255 } }, { 17 / 32.f, { 240, 240, 64 } }, { 18 / 32.f, { 32, 160, 0 } }, { 22 / 32.f, { 224, 224, 0 } }, { 28 / 32.f, { 128, 128, 128 } }, { 32 / 32.f, { 255, 255, 255 } }, { 1000000.f, { 255, 255, 255 } }, }; std::unique_ptr coloured (new uint8_t[size.area () * 3]); for (size_t i = 0; i < size.area (); ++i) { auto v = img.data ()[i] + 0/32.f; auto c1 = std::upper_bound (std::begin (GRADPOINT), std::end (GRADPOINT), v, [] (auto a, auto b) { return a < b.scale; }); auto c0 = c1-1; CHECK_GE (v, c0->scale); CHECK_LT (v, c1->scale); float t = (v - c0->scale) / (c1->scale - c0->scale); CHECK_LIMIT (t, 0, 1); auto c = ( (1 - t) * c0->value.template cast () + ( t) * c1->value.template cast () ).template cast (); coloured[i*3+0] = c[0]; coloured[i*3+1] = c[1]; coloured[i*3+2] = c[2]; } util::ppm::write (coloured.get (), size.w, size.h, size.w*3, "noise.ppm"); // write the image to disk auto grey = img.clone (); util::pgm::write (grey, "noise.pgm"); }