/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2015-2018 Danny Robson */ #ifndef __UTIL_GEOM_ELLIPSE_HPP #define __UTIL_GEOM_ELLIPSE_HPP #include "fwd.hpp" #include "../point.hpp" #include "../vector.hpp" #include #include namespace util::geom { /////////////////////////////////////////////////////////////////////////// template struct ellipse { // the centre point of the ellipsoid util::point origin; // the distance from the centre along each axis to the shape's edge util::vector radius; // the orientation of up for the shape util::vector up; }; using ellipse3f = ellipse<3,float>; /// returns the approximate surface area of the ellipse /// /// the general form involves _substantially_ more expensive and /// complicated maths which is prohibitive right now. /// /// the relative error should be at most 1.061% inline float area (ellipse3f self) { auto const semiprod = self.radius * self.radius.indices<1,2,0> (); auto const semipow = pow (semiprod, 1.6f); return 4 * pi * std::pow (sum (semipow) / 3, 1/1.6f); } template T area (ellipse<2,T> self) { return pi * product (self.radius); } template T volume (ellipse self) { return 4 / T{3} * pi * product (self.radius); } template point project ( ray, ellipse ); /// returns the distance along a ray to the surface of an ellipse. /// /// returns infinity if there is no intersection template ValueT distance ( ray, ellipse ); /// returns a point that is uniformly distributed about the ellipse /// surface. /// /// NOTE: I don't have a strong proof that the below is in fact properly /// uniformly distributed, so if you need a strong guarantee for your work /// then it might not be the best option. But visual inspection appears to /// confirm there aren't obvious patterns. /// /// the concept was taken from: https://math.stackexchange.com/a/2514182 template util::point3f sample_surface (ellipse3f self, RandomT &generator) { const auto [a, b, c] = self.radius; const auto a2 = a * a; const auto b2 = b * b; const auto c2 = c * c; // generate a direction vector from a normally distributed random variable auto const x = std::normal_distribution (0, a2) (generator); auto const y = std::normal_distribution (0, b2) (generator); auto const z = std::normal_distribution (0, c2) (generator); // find the distance to the surface along the direction vector auto const d = std::sqrt (x * x / a2 + y * y / b2 + z * z / c2); return self.origin + util::vector3f {x,y,z} / d; } } /////////////////////////////////////////////////////////////////////////////// #include "sample.hpp" #include #include namespace util::geom { template class K, typename G> struct sampler<2,T,K,G> { static util::point<2,T> fn (K<2,T> k, G &g) { std::uniform_real_distribution dist; float phi = dist (g) * 2 * pi; float rho = std::sqrt (dist (g)); return util::point<2,T> { std::cos (phi), std::sin (phi) } * rho * k.radius + k.origin.template as (); } }; } #endif