#include #include #include #include #include using cruft::quaternion; using cruft::quaternionf; /////////////////////////////////////////////////////////////////////////////// int main (void) { cruft::TAP::logger tap; // identity relations tap.expect_eq ( norm (quaternionf::identity ()), 1.f, "identity magnitude is unit" ); tap.expect_eq ( quaternionf::identity () * quaternionf::identity (), quaternionf::identity (), "identity multiplication with identity" ); // normalisation { auto val = normalised (quaternionf {2, 3, 4, 7}); tap.expect_eq ( val * quaternionf::identity (), val, "identity multiplication with quaternion constant" ); } { // construct two quaternions for a trivial multiplication check. // // we use vector as an intermediate form so that normalisation can be // done before the quaternion code is invoked (which may consider the // values to be invalid and throw an exception given it's geared more // towards rotations than general maths). cruft::vector4f a_v { 2, -11, 5, -17}; cruft::vector4f b_v { 3, 13, -7, -19}; a_v = normalised (a_v); b_v = normalised (b_v); auto a = quaternionf { a_v[0], a_v[1], a_v[2], a_v[3] }; auto b = quaternionf { b_v[0], b_v[1], b_v[2], b_v[3] }; auto c = quaternionf { -0.27358657116960006f, -0.43498209092420004f, -0.8443769181970001f, -0.15155515799559996f, }; tap.expect_eq (a * b, c, "multiplication"); tap.expect_neq (b * a, c, "multiplication is not commutative"); } tap.expect_eq ( quaternionf::identity ().as_matrix (), cruft::matrix4f::identity (), "identity quaternion to matrix" ); // check that concatenated transforms are identical to their matrix // equivalent (which we are more likely to have correct). { static const struct { float mag; cruft::vector3f axis; } ROTATIONS[] = { { 1.f, { 1.f, 0.f, 0.f } }, { 1.f, { 0.f, 1.f, 0.f } }, { 1.f, { 0.f, 0.f, 1.f } }, }; for (size_t i = 0; i < std::size (ROTATIONS); ++i) { const auto &r = ROTATIONS[i]; auto q = quaternionf::angle_axis (r.mag, r.axis).as_matrix (); auto m = cruft::rotation (r.mag, r.axis); auto diff = cruft::abs (q - m); tap.expect_lt (cruft::sum (diff), 1e-6f, "single basis rotation {:d}", i); } auto q = quaternionf::identity (); auto m = cruft::matrix4f::identity (); for (auto r: ROTATIONS) { q = q.angle_axis (r.mag, r.axis) * q; m = cruft::rotation (r.mag, r.axis) * m; } auto diff = cruft::abs (q.as_matrix () - m); tap.expect_lt (cruft::sum (diff), 1e-6f, "chained single axis rotations"); } // ensure vector rotation quaternions actually rotate a vector { const struct { cruft::vector3f src; cruft::vector3f dst; const char *msg; } TESTS[] = { { { 1, 0, 0 }, { 1, 0, 0 }, "x-axis identity" }, { { 0, 1, 0 }, { 0, 1, 0 }, "y-axis identity" }, { { 0, 0, 1 }, { 0, 0, 1 }, "z-axis identity" }, { { 0, 0, 1 }, { 0, 0, -1 }, "+z to -z" }, { { 0, 0, 1 }, { -1, 0, 0 }, "+z to -x" }, { { 1, -2, 3 }, { -4, 5, -6 }, "incremental" }, }; for (const auto &t: TESTS) { auto src = normalised (t.src); auto dst = normalised (t.dst); auto q = quaternionf::from_to (src, dst); auto v = rotate (src, q); auto diff = std::abs (cruft::sum (dst - v)); tap.expect_lt (diff, 1e-06f, "quaternion from-to, {:s}", t.msg); } } { static struct { float x, y, z; cruft::quaternionf expected; char const *msg; } const TESTS[] = { { 1.f, 2.f, 3.f, { -0.3688714f, 0.7549338f, -0.2061492f, 0.5015091f, }, "positive rotation", }, }; for (auto const &t: TESTS) { tap.expect_eq ( cruft::quaternionf::from_euler ({ t.x, t.y, t.z }), t.expected, "from_euler: {}", t.msg ); } } return tap.status (); }