/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2011-2015 Danny Robson */ #include "matrix.hpp" #include "debug.hpp" #include "iterator.hpp" #include "point.hpp" #include #include using util::matrix; /////////////////////////////////////////////////////////////////////////////// //----------------------------------------------------------------------------- //template //matrix& //matrix::invert_affine (void) //{ // CHECK (is_affine ()); // // // inv ([ M b ] == [ inv(M) -inv(M).b ] // // [ 0 1 ]) [ 0 1 ] // // // Invert the 3x3 M // T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]); // T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]); // T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]); // // T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]); // T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]); // T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]); // // T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]); // T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]); // T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]); // // T d = values[0][0] * A + values[0][1] * B + values[0][2] * C; // CHECK_NEQ (d, 0.0); // // values[0][0] = A / d; // values[0][1] = D / d; // values[0][2] = G / d; // values[1][0] = B / d; // values[1][1] = E / d; // values[1][2] = H / d; // values[2][0] = C / d; // values[2][1] = F / d; // values[2][2] = K / d; // // // Multiply the b // T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3]; // T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3]; // T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3]; // // values[0][3] = b0; // values[1][3] = b1; // values[2][3] = b2; // // return *this; //} //----------------------------------------------------------------------------- template T util::matrix::determinant (void) const { return util::determinant (*this); } //----------------------------------------------------------------------------- template util::matrix util::matrix::inverse (void) const { return util::inverse (*this); } /////////////////////////////////////////////////////////////////////////////// template matrix util::transposed (const matrix &m) { util::matrix res; for (std::size_t y = 0; y < Rows; ++y) for (std::size_t x = 0; x < Cols; ++x) res[y][x] = m[x][y]; return res; } //----------------------------------------------------------------------------- template util::matrix3f util::transposed (const matrix3f&); template util::matrix4f util::transposed (const matrix4f&); /////////////////////////////////////////////////////////////////////////////// template bool matrix::is_affine (void) const { if (Rows != Cols) return false; for (std::size_t i = 0; i < Rows - 1; ++i) if (!exactly_zero (values[Rows-1][i])) return false; return equal (values[Rows-1][Rows-1], T{1}); } //----------------------------------------------------------------------------- template util::matrix4 util::ortho (T l, T r, // left, right T b, T t, // bottom, top T n, T f) // near, far { CHECK_GT (f, n); T tx = - (r + l) / (r - l); T ty = - (t + b) / (t - b); T tz = - (f + n) / (f - n); T rl = 2 / (r - l); T tb = 2 / (t - b); T fn = -2 / (f - n); return {{ { rl, 0, 0, tx }, { 0, tb, 0, ty }, { 0, 0, fn, tz }, { 0, 0, 0, 1 }, }}; } //----------------------------------------------------------------------------- template util::matrix4 util::ortho2D (T left, T right, T bottom, T top) { return ortho (left, right, bottom, top, T{-1}, T{1}); } template util::matrix4f util::ortho2D (float, float, float, float); //----------------------------------------------------------------------------- template util::matrix4 util::perspective (T fov, T aspect, range Z) { CHECK_GE (Z.lo, 0); CHECK_GE (Z.hi, 0); T f = 1 / std::tan (fov / 2); T x = f / aspect; T y = f; T z1 = (Z.hi + Z.lo) / (Z.lo - Z.hi); T z2 = (2 * Z.hi * Z.lo) / (Z.lo - Z.hi); return { { { x, 0, 0, 0 }, { 0, y, 0, 0 }, { 0, 0, z1, z2 }, { 0, 0, -1, 0 } } }; } template util::matrix4f util::perspective (float, float, range); //----------------------------------------------------------------------------- // Emulates gluLookAt // // Translates the viewpoint to the origin, then rotates the world to point // along eye to centre (negative-Z). // Implemented for right handed world coordinates. // // Assumes 'up' is normalised. template util::matrix4 util::look_at (const util::point<3,T> eye, const util::point<3,T> centre, const util::vector<3,T> up) { CHECK (is_normalised (up)); const auto f = normalised (centre - eye); const auto s = normalised (cross (f, up)); const auto u = cross (s, f); const util::matrix4 rot {{ { s.x, s.y, s.z, 0 }, { u.x, u.y, u.z, 0 }, {-f.x,-f.y,-f.z, 0 }, { 0, 0, 0, 1 }, }}; return rot * util::translation (0-eye); } template util::matrix4f util::look_at (util::point3f, util::point3f, util::vector3f); //----------------------------------------------------------------------------- template util::matrix4 util::translation (util::vector<3,T> v) { return { { { 1.f, 0.f, 0.f, v.x }, { 0.f, 1.f, 0.f, v.y }, { 0.f, 0.f, 1.f, v.z }, { 0.f, 0.f, 0.f, 1.f }, } }; } template util::matrix4f util::translation (util::vector3f); //----------------------------------------------------------------------------- template util::matrix4 util::scale (T mag) { return scale (vector<3,T> (mag)); } template util::matrix4f util::scale(float); //----------------------------------------------------------------------------- template util::matrix4 util::scale (util::vector<3,T> v) { return { { { v.x, 0.f, 0.f, 0.f }, { 0.f, v.y, 0.f, 0.f }, { 0.f, 0.f, v.z, 0.f }, { 0.f, 0.f, 0.f, 1.f } } }; } template util::matrix4f util::scale(util::vector3f); //----------------------------------------------------------------------------- template util::matrix4 util::rotation (T angle, util::vector<3,T> about) { CHECK (is_normalised (about)); T c = std::cos (angle); T s = std::sin (angle); T x = about.x, y = about.y, z = about.z; return { { { x * x * (1 - c) + c, x * y * (1 - c) - z * s, x * z * (1 - c) + y * s, 0 }, { y * x * (1 - c) + z * s, y * y * (1 - c) + c, y * z * (1 - c) - x * s, 0 }, { z * x * (1 - c) - y * s, z * y * (1 - c) + x * s, z * z * (1 - c) + c, 0 }, { 0, 0, 0, 1 } } }; } template util::matrix4f util::rotation (float, util::vector3f); //----------------------------------------------------------------------------- template struct util::matrix<2,2,float>; template struct util::matrix<2,2,double>; template struct util::matrix<3,3,float>; template struct util::matrix<3,3,double>; template struct util::matrix<4,4,float>; template struct util::matrix<4,4,double>; /////////////////////////////////////////////////////////////////////////////// // Uses the algorithm from: // "Extracting Euler Angles from a Rotation Matrix" by // Mike Day, Insomniac Games. template util::vector<3,T> util::to_euler (const matrix &m) { static_assert (Rows == Cols && (Rows == 3 || Rows == 4), "only defined for 3d affine transforms"); const auto theta0 = std::atan2 (m[2][1], m[2][2]); const auto c1 = std::hypot (m[0][0], m[1][0]); const auto theta1 = std::atan2 (-m[2][0], c1); const auto s0 = std::sin(theta0); const auto c0 = std::cos(theta0); const auto theta2 = std::atan2( s0 * m[0][2] - c0 * m[0][1], c0 * m[1][1] - s0 * m[1][2] ); return { theta0, theta1, theta2 }; } //----------------------------------------------------------------------------- template util::vector<3,float> util::to_euler (const matrix<3,3,float>&); template util::vector<3,float> util::to_euler (const matrix<4,4,float>&);