#include "matrix.hpp" #include "debug.hpp" #include "tap.hpp" #include "vector.hpp" #include "coord/iostream.hpp" #include "quaternion.hpp" #include /////////////////////////////////////////////////////////////////////////////// int main (void) { util::TAP::logger tap; static constexpr util::matrix4f SEQ { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } } }; tap.expect_eq (sum (SEQ), 136.f, "element summation"); // tranposition { static constexpr util::matrix4f QES {{ { 1, 5, 9, 13 }, { 2, 6, 10, 14 }, { 3, 7, 11, 15 }, { 4, 8, 12, 16 } }}; tap.expect_eq (transposed (SEQ), QES, "transposition"); tap.expect_eq (transposed (transposed (SEQ)), SEQ, "double tranposition is identity"); } // matrix-scalar operations { tap.expect_eq (sum (SEQ + 1.f), 152.f, "matrix-scalar addition"); tap.expect_eq (sum (SEQ - 1.f), 120.f, "matrix-scalar subtraction"); tap.expect_eq (sum (SEQ * 2.f), 272.f, "matrix-scalar multiplication"); tap.expect_eq (sum (SEQ / 2.f), 68.f, "matrix-scalar division"); } // Simple matrix-vector multiplication { // Identity matrix-vector multiplication auto v = util::vector4f { 1.f, 2.f, 3.f, 4.f }; auto r = util::matrix4f::IDENTITY * v; tap.expect_eq (r, v, "identity matrix-vector multiplication"); } { util::vector<4,float> v { 1.f, 2.f, 3.f, 4.f }; auto r = SEQ * v; tap.expect ( util::almost_equal (r.x, 30.f) && util::almost_equal (r.y, 70.f) && util::almost_equal (r.z, 110.f) && util::almost_equal (r.w, 150.f), "simple matrix-vector multiplication" ); } { // Simple matrix-matrix multiplication util::matrix4f a { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 }, } }; util::matrix4f b { { { 17, 18, 19, 20 }, { 21, 22, 23, 24 }, { -1, -2, -3, -4 }, { -5, -6, -7, -8 } } }; util::matrix4f ab { { { 9, 8, 7, 6 }, { 41, 40, 39, 38 }, { 73, 72, 71, 70 }, { 105, 104, 103, 102 }, } }; ab *= 4.f; auto res = a * b; tap.expect_eq (ab, res, "simple matrix-matrix multiplication"); } { bool success = true; // Ensure identity inverts to identity auto m = util::matrix4f::IDENTITY.inverse (); for (size_t r = 0; r < m.rows; ++r) for (size_t c = 0; c < m.cols; ++c) if (r == c) success = success && util::almost_equal (m.values[r][c], 1.f); else success = success && util::almost_equal (m.values[r][c], 0.f); tap.expect (success, "identity inversion"); } // Simple 2x2 inversion test { util::matrix2f m { { { 1, 2 }, { 3, 4 } } }; tap.expect_eq (-2.f, m.determinant (), "2x2 determinant"); util::matrix2f r { { { -4, 2 }, { 3, -1 } } }; tap.expect_eq (r / 2.f, m.inverse (), "2x2 inversion"); } // Simple 3x3 inversion test { util::matrix3f m { { { 3, 1, 2 }, { 2, 3, 1 }, { 4, 0, 2 } } }; tap.expect_eq (-6.f, m.determinant (), "3x3 determinant"); util::matrix3f r { { { -6, 2, 5 }, { 0, 2, -1 }, { 12, -4, -7 } } }; tap.expect_eq (m.inverse (), r / 6.f, "3x3 inversion"); } // Simple 4x4 inversion test { util::matrix4f m { { { 4, 1, 2, 3 }, { 2, 3, 4, 1 }, { 3, 4, 1, 2 }, { 1, 2, 3, 4 } } }; tap.expect_eq (-160.f, m.determinant (), "4x4 determinant"); util::matrix4f r { { { 11, 1, 1, -9 }, { -9, 1, 11, 1 }, { 1, 11, -9, 1 }, { 1, -9, 1, 11 } } }; tap.expect_eq (m.inverse (), r / 40.f, "4x4 inversion"); } // sanity check euler rotations { static const struct { util::vector3f euler; const char *msg; } TESTS[] = { { util::vector3f { 0 }, "zeroes" }, { { 1, 0, 0 }, "x-axis" }, { { 0, 1, 0 }, "y-axis" }, { { 0, 0, 1 }, "z-axis" }, { util::vector3f { 1 }, "ones" }, { { 3, 5, 7 }, "positive primes" }, { { -3, -5, -7 }, "negative primes" }, { { 3, -5, 7 }, "mixed primes" }, }; for (auto t: TESTS) { constexpr auto PI2 = 2 * util::PI; auto matrix = ( util::quaternionf::angle_axis (t.euler[2], { 0, 0, 1 }) * util::quaternionf::angle_axis (t.euler[1], { 0, 1, 0 }) * util::quaternionf::angle_axis (t.euler[0], { 1, 0, 0 }) ).as_matrix (); auto euler = to_euler (matrix); auto truth = t.euler; euler = mod (euler + 4 * PI2, PI2); truth = mod (truth + 4 * PI2, PI2); tap.expect_eq (truth, euler, "matrix-to-euler, %s", t.msg); } } return tap.status (); }