/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2015 Danny Robson */ #ifndef __UTIL_STRONGDEF_HPP #define __UTIL_STRONGDEF_HPP #include namespace util { /// A transparent wrapper around a (typically lightweight) type for the /// purposes of overload disambiguation. It acts like a typesafe typedef. template struct strongdef { public: using value_type = T; constexpr strongdef () = default; constexpr explicit strongdef (const T &_data): data (_data) { ; } constexpr strongdef (const strongdef &rhs): data (rhs.data) { ; } strongdef& operator= (const strongdef &rhs) { data = rhs.data; return *this; } strongdef& operator= (const T &rhs) { data = rhs; return *this; } operator const T& (void) const { return data; } operator T& (void) { return data; } bool operator== (const strongdef &rhs) const { return data == rhs.data; } T data; }; } namespace std { template struct numeric_limits> { using value_type = typename util::strongdef::value_type; static constexpr bool is_specialized = numeric_limits::is_specialized; static constexpr bool is_signed = numeric_limits::is_signed; static constexpr bool is_integer = numeric_limits::is_integer; static constexpr bool is_exact = numeric_limits::is_exact; static constexpr bool has_infinity = numeric_limits::has_infinity; static constexpr bool has_quiet_NaN = numeric_limits::has_quiet_NaN; static constexpr bool has_signaling_NaN = numeric_limits::has_signaling_NaN; static constexpr bool has_denorm = numeric_limits::has_denorm; static constexpr bool has_denorm_loss = numeric_limits::has_denorm_loss; static constexpr std::float_round_style round_style = numeric_limits::round_style; static constexpr bool is_iec559 = numeric_limits::is_iec559; static constexpr bool is_bounded = numeric_limits::is_bounded; static constexpr bool is_modulo = numeric_limits::is_modulo; static constexpr int digits = numeric_limits::digits; static constexpr int digits10 = numeric_limits::digits10; static constexpr int max_digits10 = numeric_limits::max_digits10; static constexpr int radix = numeric_limits::radix; static constexpr int min_exponent = numeric_limits::min_exponent; static constexpr int min_exponent10 = numeric_limits::min_exponent10; static constexpr int max_exponent = numeric_limits::max_exponent; static constexpr int max_exponent10 = numeric_limits::max_exponent10; static constexpr bool traps = numeric_limits::traps; static constexpr bool tinyness_before = numeric_limits::tinyness_before; static constexpr value_type min (void) { return numeric_limits::min (); } static constexpr value_type lowest (void) { return numeric_limits::lowest (); } static constexpr value_type max (void) { return numeric_limits::max (); } static constexpr value_type epsilon (void) { return numeric_limits::epsilon (); } static constexpr value_type round_error (void) { return numeric_limits::round_error (); } static constexpr value_type infinity (void) { return numeric_limits::infinity (); } static constexpr value_type quiet_NaN (void) { return numeric_limits::quiet_NaN (); } static constexpr value_type signaling_NaN (void) { return numeric_limits::signaling_NaN (); } static constexpr value_type denorm_min (void) { return numeric_limits::denorm_min (); } }; } #endif