/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2012-2015 Danny Robson */ #include "perlin.hpp" #include "../../hash/murmur/murmur2.hpp" using util::noise::basis::perlin; /////////////////////////////////////////////////////////////////////////////// template util::vector<2,T> generate (util::point<2,T> p, uint64_t seed) { using util::hash::murmur2::mix; auto u = mix (seed, mix (uint64_t (p.x), uint64_t (p.y))); auto v = mix (u, seed); auto r = util::vector<2,T> { (u & 0xffff) / T{0xffff}, (v & 0xffff) / T{0xffff} } * 2 - 1; CHECK_GE (r, T{-1}); CHECK_LE (r, T{ 1}); return r; } /////////////////////////////////////////////////////////////////////////////// template L> perlin::perlin (seed_t _seed): seed (_seed) { ; } //----------------------------------------------------------------------------- template L> perlin::perlin (): seed (time (nullptr)) { ; } //----------------------------------------------------------------------------- template L> util::range perlin::bounds (void) const { return { -std::sqrt (T{2}) / 2, std::sqrt (T{2}) / 2 }; } //----------------------------------------------------------------------------- template L> T perlin::operator() (util::point<2,T> p) const { auto p_int = p.template cast (); auto p_rem = p - p_int; // Shift the coordinate system down a little to ensure we get unit weights // for the lerp. It's better to do this than abs the fractional portion so // we don't get reflections along the origin. if (p.x < 0) { p_rem.x = 1 + p_rem.x; p_int.x -= 1; } if (p.y < 0) { p_rem.y = 1 + p_rem.y; p_int.y -= 1; } // Generate the four corner values. It's not strictly necessary to // normalise the values, but we get a more consistent and visually // appealing range of outputs with normalised values. auto p0 = generate (p_int + util::vector<2,T> { 0, 0 }, this->seed).normalise (); auto p1 = generate (p_int + util::vector<2,T> { 1, 0 }, this->seed).normalise (); auto p2 = generate (p_int + util::vector<2,T> { 0, 1 }, this->seed).normalise (); auto p3 = generate (p_int + util::vector<2,T> { 1, 1 }, this->seed).normalise (); T v0 = p0.x * p_rem.x + p0.y * p_rem.y; T v1 = p1.x * (p_rem.x - 1) + p1.y * p_rem.y; T v2 = p2.x * p_rem.x + p2.y * (p_rem.y - 1); T v3 = p3.x * (p_rem.x - 1) + p3.y * (p_rem.y - 1); auto L0 = L (v0, v1, p_rem.x); auto L1 = L (v2, v3, p_rem.x); auto L_ = L (L0, L1, p_rem.y); return L_; } /////////////////////////////////////////////////////////////////////////////// #include "../lerp.hpp" namespace util { namespace noise { namespace basis { template struct perlin; template struct perlin; template struct perlin; template struct perlin; template struct perlin; template struct perlin; } } }