/*
* This file is part of libgim.
*
* libgim is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* libgim is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see .
*
* Copyright 2010-2014 Danny Robson
*/
#ifndef __MATHS_HPP
#define __MATHS_HPP
#include "debug.hpp"
#include
#include
#include
#include
template
T
abs (T value)
{ return value > 0 ? value : -value; }
//-----------------------------------------------------------------------------
// Exponentials
template
constexpr T
pow2 [[gnu::pure]] (T value)
{ return value * value; }
template
constexpr T
pow [[gnu::pure]] (T x, unsigned y);
template
bool
is_pow2 [[gnu::pure]] (T value);
//-----------------------------------------------------------------------------
// Logarithms
template
T
log2 [[gnu::pure]] (T val);
template
T
log2up [[gnu::pure]] (T val);
//-----------------------------------------------------------------------------
// Roots
template
double
rootsquare [[gnu::pure]] (T a, T b);
//-----------------------------------------------------------------------------
// Rounding
template
typename std::common_type::type
align [[gnu::pure]] (T value, U size);
template
T
round_pow2 [[gnu::pure]] (T value);
template
constexpr T
divup [[gnu::pure]] (const T a, const U b)
{ return (a + b - 1) / b; }
//-----------------------------------------------------------------------------
// Classification
template
bool
is_integer [[gnu::pure]] (const T& value);
//-----------------------------------------------------------------------------
// Properties
template
unsigned
digits [[gnu::pure]] (const T& value);
//-----------------------------------------------------------------------------
template
int sign [[gnu::pure]] (T val);
//-----------------------------------------------------------------------------
// Comparisons
template
bool
almost_equal [[gnu::pure]] (const T &a, const T &b)
{ return a == b; }
template <>
bool
almost_equal [[gnu::pure]] (const float &a, const float &b);
template <>
bool
almost_equal [[gnu::pure]] (const double &a, const double &b);
template
typename std::enable_if<
std::is_arithmetic::value && std::is_arithmetic::value,
bool
>::type
almost_equal [[gnu::pure]] (Ta a, Tb b) {
return almost_equal (static_cast(a),
static_cast(b));
}
template
typename std::enable_if<
!std::is_arithmetic::value || !std::is_arithmetic::value,
bool
>::type
almost_equal [[gnu::pure]] (const Ta &a, const Tb &b)
{ return a == b; }
// Useful for explictly ignore equality warnings
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
template
bool
exactly_equal [[gnu::pure]] (const T &a, const U &b)
{ return a == b; }
#pragma GCC diagnostic pop
template
bool
almost_zero [[gnu::pure]] (T a)
{ return almost_equal (a, 0); }
template
bool
exactly_zero [[gnu::pure]] (T a)
{ return exactly_equal (a, static_cast (0)); }
//-----------------------------------------------------------------------------
// angles, trig
template
struct constants { };
constexpr double PI_d = 3.141592653589793238462643;
constexpr float PI_f = 3.141592653589793238462643f;
constexpr float E_f = 2.71828182845904523536028747135266250f;
constexpr double E_d = 2.71828182845904523536028747135266250;
template
constexpr T
to_degrees [[gnu::pure]] (T radians)
{
return radians * 180 / constants::PI;
}
template
constexpr T
to_radians [[gnu::pure]] (T degrees)
{
return degrees / 180 * constants::PI;
}
//! Normalised sinc function
template
constexpr T
sincn [[gnu::pure]] (T x)
{
return almost_zero (x) ? 1 : std::sin (constants::PI * x) / (constants::PI * x);
}
//! Unnormalised sinc function
template
constexpr T
sincu [[gnu::pure]] (T x)
{
return almost_zero (x) ? 1 : std::sin (x) / x;
}
//-----------------------------------------------------------------------------
constexpr uintmax_t
factorial [[gnu::pure]] (unsigned i)
{
return i <= 1 ? 0 : i * factorial (i - 1);
}
constexpr uintmax_t
stirling [[gnu::pure]] (unsigned n)
{
return static_cast (std::sqrt (2 * PI_f * n) * std::pow (n / E_f, n));
}
constexpr uintmax_t
combination [[gnu::pure]] (unsigned n, unsigned k)
{
return factorial (n) / (factorial (k) / (factorial (n - k)));
}
//-----------------------------------------------------------------------------
/// Variadic minimum
template
constexpr T
min [[gnu::pure]] (const T a)
{ return a; }
template
constexpr typename std::enable_if<
std::is_unsigned::type>::value == std::is_unsigned::type>::value &&
std::is_integral::type>::value == std::is_integral::type>::value,
typename std::common_type::type
>::type
min [[gnu::pure]] (const T a, const U b, Args ...args)
{
return min (a < b ? a : b, std::forward (args)...);
}
//-----------------------------------------------------------------------------
/// Variadic maximum
template
constexpr T
max [[gnu::pure]] (const T a)
{ return a; }
template
constexpr typename std::enable_if<
std::is_unsigned::type>::value == std::is_unsigned::type>::value &&
std::is_integral::type>::value == std::is_integral::type>::value,
typename std::common_type::type
>::type
max [[gnu::pure]] (const T a, const U b, Args ...args)
{
return max (a > b ? a : b, std::forward (args)...);
}
//-----------------------------------------------------------------------------
template
T
limit [[gnu::pure]] (const T val, const U hi, const V lo)
{
return val > hi ? hi:
val < lo ? lo:
val;
}
// clamped cubic hermite interpolation
template
T
smoothstep [[gnu::pure]] (T a, T b, T x)
{
CHECK_LE(a, b);
x = limit ((x - a) / (b - a), T{0}, T{1});
return x * x * (3 - 2 * x);
}
#include "maths.ipp"
#endif // __MATHS_HPP