/* * This file is part of libgim. * * libgim is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libgim is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with libgim. If not, see . * * Copyright 2011-2014 Danny Robson */ #include "matrix.hpp" #include "debug.hpp" #include using namespace util; //----------------------------------------------------------------------------- template void matrix::scale (T x, T y, T z) { CHECK_HARD (is_affine ()); values[0][0] *= x; values[1][1] *= y; values[2][2] *= z; } //----------------------------------------------------------------------------- template void matrix::translate (T x, T y, T z) { CHECK_HARD (is_affine ()); values[0][3] += x; values[1][3] += y; values[2][3] += z; } //----------------------------------------------------------------------------- template matrix matrix::transposed (void) const { matrix m; for (size_t i = 0; i < 4; ++i) for (size_t j = 0; j < 4; ++j) m.values[i][j] = values[j][i]; return m; } //----------------------------------------------------------------------------- template matrix& matrix::transpose (void) { for (size_t i = 0; i < 4; ++i) for (size_t j = i + 1; j < 4; ++j) std::swap (values[i][j], values[j][i]); return *this; } //----------------------------------------------------------------------------- template matrix matrix::inverse (void) const { matrix m; T d = det (); if (almost_zero (d)) throw std::runtime_error ("non-singular matrix"); auto v = values; m.values[0][0] = v[1][2] * v[2][3] * v[3][1] - v[1][3] * v[2][2] * v[3][1] + v[1][3] * v[2][1] * v[3][2] - v[1][1] * v[2][3] * v[3][2] - v[1][2] * v[2][1] * v[3][3] + v[1][1] * v[2][2] * v[3][3]; m.values[0][1] = v[0][3] * v[2][2] * v[3][1] - v[0][2] * v[2][3] * v[3][1] - v[0][3] * v[2][1] * v[3][2] + v[0][1] * v[2][3] * v[3][2] + v[0][2] * v[2][1] * v[3][3] - v[0][1] * v[2][2] * v[3][3]; m.values[0][2] = v[0][2] * v[1][3] * v[3][1] - v[0][3] * v[1][2] * v[3][1] + v[0][3] * v[1][1] * v[3][2] - v[0][1] * v[1][3] * v[3][2] - v[0][2] * v[1][1] * v[3][3] + v[0][1] * v[1][2] * v[3][3]; m.values[0][3] = v[0][3] * v[1][2] * v[2][1] - v[0][2] * v[1][3] * v[2][1] - v[0][3] * v[1][1] * v[2][2] + v[0][1] * v[1][3] * v[2][2] + v[0][2] * v[1][1] * v[2][3] - v[0][1] * v[1][2] * v[2][3]; m.values[1][0] = v[1][3] * v[2][2] * v[3][0] - v[1][2] * v[2][3] * v[3][0] - v[1][3] * v[2][0] * v[3][2] + v[1][0] * v[2][3] * v[3][2] + v[1][2] * v[2][0] * v[3][3] - v[1][0] * v[2][2] * v[3][3]; m.values[1][1] = v[0][2] * v[2][3] * v[3][0] - v[0][3] * v[2][2] * v[3][0] + v[0][3] * v[2][0] * v[3][2] - v[0][0] * v[2][3] * v[3][2] - v[0][2] * v[2][0] * v[3][3] + v[0][0] * v[2][2] * v[3][3]; m.values[1][2] = v[0][3] * v[1][2] * v[3][0] - v[0][2] * v[1][3] * v[3][0] - v[0][3] * v[1][0] * v[3][2] + v[0][0] * v[1][3] * v[3][2] + v[0][2] * v[1][0] * v[3][3] - v[0][0] * v[1][2] * v[3][3]; m.values[1][3] = v[0][2] * v[1][3] * v[2][0] - v[0][3] * v[1][2] * v[2][0] + v[0][3] * v[1][0] * v[2][2] - v[0][0] * v[1][3] * v[2][2] - v[0][2] * v[1][0] * v[2][3] + v[0][0] * v[1][2] * v[2][3]; m.values[2][0] = v[1][1] * v[2][3] * v[3][0] - v[1][3] * v[2][1] * v[3][0] + v[1][3] * v[2][0] * v[3][1] - v[1][0] * v[2][3] * v[3][1] - v[1][1] * v[2][0] * v[3][3] + v[1][0] * v[2][1] * v[3][3]; m.values[2][1] = v[0][3] * v[2][1] * v[3][0] - v[0][1] * v[2][3] * v[3][0] - v[0][3] * v[2][0] * v[3][1] + v[0][0] * v[2][3] * v[3][1] + v[0][1] * v[2][0] * v[3][3] - v[0][0] * v[2][1] * v[3][3]; m.values[2][2] = v[0][1] * v[1][3] * v[3][0] - v[0][3] * v[1][1] * v[3][0] + v[0][3] * v[1][0] * v[3][1] - v[0][0] * v[1][3] * v[3][1] - v[0][1] * v[1][0] * v[3][3] + v[0][0] * v[1][1] * v[3][3]; m.values[2][3] = v[0][3] * v[1][1] * v[2][0] - v[0][1] * v[1][3] * v[2][0] - v[0][3] * v[1][0] * v[2][1] + v[0][0] * v[1][3] * v[2][1] + v[0][1] * v[1][0] * v[2][3] - v[0][0] * v[1][1] * v[2][3]; m.values[3][0] = v[1][2] * v[2][1] * v[3][0] - v[1][1] * v[2][2] * v[3][0] - v[1][2] * v[2][0] * v[3][1] + v[1][0] * v[2][2] * v[3][1] + v[1][1] * v[2][0] * v[3][2] - v[1][0] * v[2][1] * v[3][2]; m.values[3][1] = v[0][1] * v[2][2] * v[3][0] - v[0][2] * v[2][1] * v[3][0] + v[0][2] * v[2][0] * v[3][1] - v[0][0] * v[2][2] * v[3][1] - v[0][1] * v[2][0] * v[3][2] + v[0][0] * v[2][1] * v[3][2]; m.values[3][2] = v[0][2] * v[1][1] * v[3][0] - v[0][1] * v[1][2] * v[3][0] - v[0][2] * v[1][0] * v[3][1] + v[0][0] * v[1][2] * v[3][1] + v[0][1] * v[1][0] * v[3][2] - v[0][0] * v[1][1] * v[3][2]; m.values[3][3] = v[0][1] * v[1][2] * v[2][0] - v[0][2] * v[1][1] * v[2][0] + v[0][2] * v[1][0] * v[2][1] - v[0][0] * v[1][2] * v[2][1] - v[0][1] * v[1][0] * v[2][2] + v[0][0] * v[1][1] * v[2][2]; m /= d; return m; } //----------------------------------------------------------------------------- template matrix& matrix::invert (void) { auto m = *this; m.invert (); *this = m; return *this; } //----------------------------------------------------------------------------- template matrix matrix::inverse_affine (void) const { return matrix(*this).invert_affine (); } //----------------------------------------------------------------------------- template matrix& matrix::invert_affine (void) { CHECK_HARD (is_affine ()); // inv ([ M b ] == [ inv(M) -inv(M).b ] // [ 0 1 ]) [ 0 1 ] // Invert the 3x3 M T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]); T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]); T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]); T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]); T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]); T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]); T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]); T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]); T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]); T d = values[0][0] * A + values[0][1] * B + values[0][2] * C; CHECK_NEQ (d, 0.0); values[0][0] = A / d; values[0][1] = D / d; values[0][2] = G / d; values[1][0] = B / d; values[1][1] = E / d; values[1][2] = H / d; values[2][0] = C / d; values[2][1] = F / d; values[2][2] = K / d; // Multiply the b T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3]; T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3]; T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3]; values[0][3] = b0; values[1][3] = b1; values[2][3] = b2; return *this; } //----------------------------------------------------------------------------- template T matrix::det (void) const { return values[0][3] * values[1][2] * values[2][1] * values[3][0] - values[0][2] * values[1][3] * values[2][1] * values[3][0] - values[0][3] * values[1][1] * values[2][2] * values[3][0] + values[0][1] * values[1][3] * values[2][2] * values[3][0] + values[0][2] * values[1][1] * values[2][3] * values[3][0] - values[0][1] * values[1][2] * values[2][3] * values[3][0] - values[0][3] * values[1][2] * values[2][0] * values[3][1] + values[0][2] * values[1][3] * values[2][0] * values[3][1] + values[0][3] * values[1][0] * values[2][2] * values[3][1] - values[0][0] * values[1][3] * values[2][2] * values[3][1] - values[0][2] * values[1][0] * values[2][3] * values[3][1] + values[0][0] * values[1][2] * values[2][3] * values[3][1] + values[0][3] * values[1][1] * values[2][0] * values[3][2] - values[0][1] * values[1][3] * values[2][0] * values[3][2] - values[0][3] * values[1][0] * values[2][1] * values[3][2] + values[0][0] * values[1][3] * values[2][1] * values[3][2] + values[0][1] * values[1][0] * values[2][3] * values[3][2] - values[0][0] * values[1][1] * values[2][3] * values[3][2] - values[0][2] * values[1][1] * values[2][0] * values[3][3] + values[0][1] * values[1][2] * values[2][0] * values[3][3] + values[0][2] * values[1][0] * values[2][1] * values[3][3] - values[0][0] * values[1][2] * values[2][1] * values[3][3] - values[0][1] * values[1][0] * values[2][2] * values[3][3] + values[0][0] * values[1][1] * values[2][2] * values[3][3]; } //----------------------------------------------------------------------------- template matrix matrix::operator* (const matrix &rhs) const { matrix m; for (unsigned row = 0; row < 4; ++row) { for (unsigned col = 0; col < 4; ++col) { m.values[row][col] = T {0}; for (unsigned inner = 0; inner < 4; ++inner) m.values[row][col] += values[row][inner] * rhs.values[inner][col]; } } return m; } //----------------------------------------------------------------------------- template vector<4> matrix::operator* (const vector<4> &rhs) const { return vector<4> { values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w, values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w, values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w, values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w }; } //----------------------------------------------------------------------------- template matrix matrix::operator/ (T s) const { matrix m; for (size_t r = 0; r < m.rows; ++r) for (size_t c = 0; c < m.cols; ++c) m.values[r][c] = values[r][c] / s; return m; } //----------------------------------------------------------------------------- template matrix& matrix::operator/= (T s) { for (size_t r = 0; r < rows; ++r) for (size_t c = 0; c < cols; ++c) values[r][c] /= s; return *this; } //----------------------------------------------------------------------------- template bool matrix::operator== (const matrix &rhs) const { for (size_t r = 0; r < rows; ++r) for (size_t c = 0; c < cols; ++c) if (!almost_equal (rhs.values[r][c], values[r][c])) return false; return true; } //----------------------------------------------------------------------------- template util::point<3> matrix::to_local (const util::point<3> &p) const { CHECK_SOFT (is_affine ()); return { p.x * values[0][0] + p.y * values[0][1] + p.z * values[0][2] + values[0][3], p.x * values[1][0] + p.y * values[1][1] + p.z * values[1][2] + values[1][3], p.x * values[2][0] + p.y * values[2][1] + p.z * values[2][2] + values[2][3] }; } //----------------------------------------------------------------------------- template util::point<3> matrix::to_global (const util::point<3> &p) const { return inverse ().to_local (p); } //----------------------------------------------------------------------------- template bool matrix::is_affine (void) const { return exactly_equal (values[3][0], T {0}) && exactly_equal (values[3][1], T {0}) && exactly_equal (values[3][2], T {0}) && exactly_equal (values[3][3], T {1}); } //----------------------------------------------------------------------------- template const matrix matrix::IDENTITY = { { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } } }; template const matrix matrix::ZEROES = { { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } } }; //----------------------------------------------------------------------------- namespace util { template struct matrix; template struct matrix; } //----------------------------------------------------------------------------- namespace util { template std::ostream& operator<< (std::ostream &os, const matrix &m) { os << "{ {" << m.values[0][0] << ", " << m.values[0][1] << ", " << m.values[0][2] << ", " << m.values[0][3] << "}, " << "{" << m.values[1][0] << ", " << m.values[1][1] << ", " << m.values[1][2] << ", " << m.values[1][3] << "}, " << "{" << m.values[2][0] << ", " << m.values[2][1] << ", " << m.values[2][2] << ", " << m.values[2][3] << "}, " << "{" << m.values[3][0] << ", " << m.values[3][1] << ", " << m.values[3][2] << ", " << m.values[3][3] << "} }"; return os; } } template std::ostream& util::operator<< (std::ostream&, const matrix&); template std::ostream& util::operator<< (std::ostream&, const matrix&);