#include "image.hpp" #include "noise.hpp" #include "noise/fractal/fbm.hpp" #include "noise/fractal/hetero.hpp" #include "noise/fractal/hmf.hpp" #include "noise/fractal/rmf.hpp" #include "noise/fractal/runtime.hpp" #include "noise/lerp.hpp" #include "noise/basis/constant.hpp" #include "noise/basis/value.hpp" #include "noise/basis/patch.hpp" #include "noise/basis/perlin.hpp" #include "noise/basis/worley.hpp" #include "noise/turbulence.hpp" #include "noise/basis/runtime.hpp" #include "noise/midpoint.hpp" #include "extent.hpp" #include "colour.hpp" #include "netpbm.hpp" #include "types.hpp" #include "cmdopt.hpp" #include "region.hpp" /////////////////////////////////////////////////////////////////////////////// template struct util::noise::fractal::fbm>; template struct util::noise::fractal::hmf>; template struct util::noise::fractal::rmf>; template struct util::noise::fractal::hetero>; /////////////////////////////////////////////////////////////////////////////// enum basis_t { VALUE, PERLIN, WORLEY, PATCH }; //----------------------------------------------------------------------------- enum fractal_t { FBM, HMF, RMF, HETERO, }; //----------------------------------------------------------------------------- enum lerp_t { LINEAR, CUBIC, QUINTIC, COSINE, TRUNC }; //----------------------------------------------------------------------------- std::istream& operator>> (std::istream &is, basis_t &b) { std::string name; is >> name; b = name == "value" ? VALUE : name == "perlin" ? PERLIN : name == "worley" ? WORLEY : name == "patch" ? PATCH : (is.setstate (std::istream::failbit), b); return is; } //----------------------------------------------------------------------------- std::ostream& operator<< (std::ostream &os, basis_t b) { switch (b) { case VALUE: os << "value"; return os; case PERLIN: os << "perlin"; return os; case WORLEY: os << "worley"; return os; case PATCH: os << "patch"; return os; default: unreachable (); } } //----------------------------------------------------------------------------- std::istream& operator>> (std::istream &is, fractal_t &f) { std::string name; is >> name; f = name == "fbm" ? FBM : name == "hmf" ? HMF : name == "rmf" ? RMF : name == "hetero" ? HETERO : (is.setstate (std::istream::failbit), f); return is; } //----------------------------------------------------------------------------- std::ostream& operator<< (std::ostream &os, fractal_t f) { switch (f) { case FBM: os << "fbm"; return os; case HMF: os << "hmf"; return os; case RMF: os << "rmf"; return os; case HETERO: os << "hetero"; return os; default: unreachable (); }; } //----------------------------------------------------------------------------- std::istream& operator>> (std::istream &is, lerp_t &l) { std::string name; is >> name; l = name == "linear" ? LINEAR : name == "cubic" ? CUBIC : name == "quintic" ? QUINTIC : name == "cosine" ? COSINE : name == "trunc" ? TRUNC : (is.setstate (std::istream::failbit), l); return is; } //----------------------------------------------------------------------------- std::ostream& operator<< (std::ostream &os, lerp_t &l) { switch (l) { case LINEAR: os << "linear"; return os; case CUBIC: os << "cubic"; return os; case QUINTIC: os << "quintic"; return os; case COSINE: os << "cosine"; return os; case TRUNC: os << "trunc"; return os; default: unreachable (); } } /////////////////////////////////////////////////////////////////////////////// int main (int argc, char **argv) { #if !defined(ENABLE_DEBUGGING) and !defined(PLATFORM_WIN32) if (isatty (fileno (stdout))) { std::cerr << "cowardly refusing to dump binary data to console\n"; return EXIT_FAILURE; } #endif // setup default variables #ifdef ENABLE_DEBUGGING util::extent2u res {320, 240}; #else util::extent2u res {1920, 1080}; #endif uint64_t seed = time (nullptr); basis_t basis = PERLIN; fractal_t fractal = FBM; lerp_t lerp = QUINTIC; unsigned octaves = 8; float H = std::numeric_limits::quiet_NaN (); float lacunarity = std::numeric_limits::quiet_NaN (); float amplitude = std::numeric_limits::quiet_NaN (); float gain = std::numeric_limits::quiet_NaN (); float offset = std::numeric_limits::quiet_NaN (); float scale = 1.f; float turbulence = 0.f; unsigned single = 0; float width = 0; // fill variables from arguments util::cmdopt::parser args; args.add> ('w', "width", "output image width", res.w); args.add> ('h', "height", "output image height", res.h); args.add> ('s', "seed", "random seed", seed); args.add> ('b', "basis", "primary basis function", basis); args.add> ('f', "fractal", "primary fractal function", fractal); args.add> ('l', "lerp", "interpolation algorithm", lerp); args.add> ('o', "octaves", "total fractal iterations", octaves); args.add> ('1', "single", "single octave", single); args.add> ('H', "hurst", "Hurst exponent", H); args.add> ('G', "gain", "octave gain", gain); args.add> ('A', "amplitude", "base amplitude", amplitude); args.add> ('L', "lacunarity", "frequency multiplier", lacunarity); args.add> ('x', "scale", "frequency multiplier", scale); args.add> ('O', "offset", "hetero offset", offset); args.add> ('t', "turbulence", "turbulence scale", turbulence); args.add> ('W', "patch-width", "patch blur width", width); args.scan (argc, argv); util::noise::turbulence< float, util::noise::fractal::runtime< float, util::noise::basis::runtime >, util::noise::fractal::fbm< float, util::noise::basis::perlin< float, util::lerp::cubic > > > t (seed, { turbulence, turbulence }); auto &f = t.data; switch (fractal) { using namespace util::noise; case FBM: f.reset>> (seed); break; case HMF: f.reset>> (seed); break; case RMF: f.reset>> (seed); break; case HETERO: { auto &child = f.reset>> (seed); if (!std::isnan (offset)) child.offset (offset); break; } default: unreachable (); } auto &b = f.basis (); switch (basis) { using namespace util::noise; case PERLIN: { switch (lerp) { case LINEAR: b.reset> (seed); break; case CUBIC: b.reset> (seed); break; case QUINTIC: b.reset> (seed); break; case COSINE: b.reset> (seed); break; case TRUNC: b.reset> (seed); break; default: unreachable (); } break; } case VALUE: { switch (lerp) { case LINEAR: b.reset> (seed); break; case CUBIC: b.reset> (seed); break; case QUINTIC: b.reset> (seed); break; case COSINE: b.reset> (seed); break; case TRUNC: b.reset> (seed); break; default: unreachable (); } break; } case WORLEY: { b.reset> (seed); break; } case PATCH: { b.reset> (seed, width); break; } default: unreachable (); } t.seed (seed); f.octaves (octaves); f.frequency (scale / res.w); if (!std::isnan (H)) f.H (H); if (!std::isnan (lacunarity)) f.lacunarity (lacunarity); if (!std::isnan (amplitude)) f.amplitude (amplitude); if (!std::isnan (gain)) f.gain (gain); t.perturb[0].frequency ( scale / res.w); t.perturb[1].frequency ( scale / res.w); util::image::buffer img (res); // XXX: offset slightly to avoid origin artefacts in some basis functions static const auto OFFSET = util::vector2f { -100 }; { for (size_t y = 0; y < res.h; ++y) for (size_t x = 0; x < res.w; ++x) img.data ()[y * img.s + x] = t (util::point2f {float (x), float (y)} + OFFSET); } // working on the assumption that all octave images are based on summation, // subtract the image with one less octave from our current image to leave // us with the highest octave contribution only. this is hideously // inefficient, but it's not an operation we care about in general. if (single && f.octaves () != 1) { auto oldoctaves = f.octaves (); f.octaves (oldoctaves - 1); auto prev = img.clone (); for (size_t y = 0; y < res.h; ++y) for (size_t x = 0; x < res.w; ++x) prev.data ()[y * img.s + x] = t (util::point2f {float (x), float (y)} + OFFSET); CHECK_EQ (img.stride (), prev.stride ()); for (size_t i = 0; i < img.size (); ++i) img[i] -= prev[i]; f.octaves (oldoctaves); } // rescale into the range [0, 1] auto range = std::minmax_element (img.begin (), img.end ()); auto inc = *range.first; auto div = *range.second - *range.first; std::cerr << '[' << *range.first << ',' << *range.second << "]\n"; std::transform (img.begin (), img.end (), img.begin (), [inc,div] (auto i) { return (i - inc) / div; }); // write the images to disk util::pgm::write (img.cast (), std::cout); }