/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2015-2018 Danny Robson */ #pragma once #include "../point.hpp" #include "../vector.hpp" #include "../matrix.hpp" namespace util::geom { /// represents an S dimensional plane in parametric form: ax + by + cz + d = 0 template struct plane { plane () = default; plane (util::point base, util::vector normal); explicit plane (util::vector _coefficients): coefficients (_coefficients) { ; } util::vector coefficients; }; typedef plane<2,float> plane2f; typedef plane<3,float> plane3f; inline plane3f make_plane (util::point3f a, util::point3f b, util::point3f c) { return plane3f (a, normalised (cross (b - a, c - a))); } /////////////////////////////////////////////////////////////////////////// /// returns the normal for a plane template util::vector normal (plane p) { return p.coefficients.template redim (); } /////////////////////////////////////////////////////////////////////////// /// normalises a plane's parametric form /// /// useful only after manually modifying the coefficients (as in default /// construction and piecewise initialisation). a plane will otherwise be /// assumed to be in normal form. template plane normalised (plane p) { const auto mag = norm (normal (p)); CHECK_NEZ (mag); return plane (p.coefficients / mag); } /////////////////////////////////////////////////////////////////////////// /// calculates the distance from a plane to a point. /// /// positive distances are in front of the plane, negative is behind; template T distance (plane p, point q) { auto d = dot ( p.coefficients, q.template redim (-1) ); return d / norm (normal (p)); } template T distance (point p, plane q) { return -distance (q, p); } /////////////////////////////////////////////////////////////////////////// template auto furthest (plane p, const std::vector> &cloud) { T maxd = -INFINITY; auto best = cloud.begin (); for (auto q = cloud.begin (), last = cloud.end (); q != last; ++q) { if (auto d = distance (p, *q); d > maxd) { maxd = d; best = q; } } return std::make_tuple (best, maxd); } template auto furthest (plane, std::vector> &&) = delete; }