/* * This file is part of libgim. * * libgim is free software: you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation, either version 3 of the License, or (at your option) any later * version. * * libgim is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with libgim. If not, see . * * Copyright 2011-2014 Danny Robson */ #include "matrix.hpp" #include "debug.hpp" #include #include using namespace util; //----------------------------------------------------------------------------- template void matrix::scale (T x, T y, T z) { CHECK_HARD (is_affine ()); values[0][0] *= x; values[1][1] *= y; values[2][2] *= z; } //----------------------------------------------------------------------------- template void matrix::translate (T x, T y, T z) { CHECK_HARD (is_affine ()); values[0][3] += x; values[1][3] += y; values[2][3] += z; } //----------------------------------------------------------------------------- template matrix matrix::transposed (void) const { matrix m; for (size_t i = 0; i < 4; ++i) for (size_t j = 0; j < 4; ++j) m.values[i][j] = values[j][i]; return m; } //----------------------------------------------------------------------------- template matrix& matrix::transpose (void) { for (size_t i = 0; i < 4; ++i) for (size_t j = i + 1; j < 4; ++j) std::swap (values[i][j], values[j][i]); return *this; } //----------------------------------------------------------------------------- template matrix matrix::inverse (void) const { matrix m; T d = det (); if (almost_zero (d)) throw std::runtime_error ("non-singular matrix"); auto v = values; m.values[0][0] = v[1][2] * v[2][3] * v[3][1] - v[1][3] * v[2][2] * v[3][1] + v[1][3] * v[2][1] * v[3][2] - v[1][1] * v[2][3] * v[3][2] - v[1][2] * v[2][1] * v[3][3] + v[1][1] * v[2][2] * v[3][3]; m.values[0][1] = v[0][3] * v[2][2] * v[3][1] - v[0][2] * v[2][3] * v[3][1] - v[0][3] * v[2][1] * v[3][2] + v[0][1] * v[2][3] * v[3][2] + v[0][2] * v[2][1] * v[3][3] - v[0][1] * v[2][2] * v[3][3]; m.values[0][2] = v[0][2] * v[1][3] * v[3][1] - v[0][3] * v[1][2] * v[3][1] + v[0][3] * v[1][1] * v[3][2] - v[0][1] * v[1][3] * v[3][2] - v[0][2] * v[1][1] * v[3][3] + v[0][1] * v[1][2] * v[3][3]; m.values[0][3] = v[0][3] * v[1][2] * v[2][1] - v[0][2] * v[1][3] * v[2][1] - v[0][3] * v[1][1] * v[2][2] + v[0][1] * v[1][3] * v[2][2] + v[0][2] * v[1][1] * v[2][3] - v[0][1] * v[1][2] * v[2][3]; m.values[1][0] = v[1][3] * v[2][2] * v[3][0] - v[1][2] * v[2][3] * v[3][0] - v[1][3] * v[2][0] * v[3][2] + v[1][0] * v[2][3] * v[3][2] + v[1][2] * v[2][0] * v[3][3] - v[1][0] * v[2][2] * v[3][3]; m.values[1][1] = v[0][2] * v[2][3] * v[3][0] - v[0][3] * v[2][2] * v[3][0] + v[0][3] * v[2][0] * v[3][2] - v[0][0] * v[2][3] * v[3][2] - v[0][2] * v[2][0] * v[3][3] + v[0][0] * v[2][2] * v[3][3]; m.values[1][2] = v[0][3] * v[1][2] * v[3][0] - v[0][2] * v[1][3] * v[3][0] - v[0][3] * v[1][0] * v[3][2] + v[0][0] * v[1][3] * v[3][2] + v[0][2] * v[1][0] * v[3][3] - v[0][0] * v[1][2] * v[3][3]; m.values[1][3] = v[0][2] * v[1][3] * v[2][0] - v[0][3] * v[1][2] * v[2][0] + v[0][3] * v[1][0] * v[2][2] - v[0][0] * v[1][3] * v[2][2] - v[0][2] * v[1][0] * v[2][3] + v[0][0] * v[1][2] * v[2][3]; m.values[2][0] = v[1][1] * v[2][3] * v[3][0] - v[1][3] * v[2][1] * v[3][0] + v[1][3] * v[2][0] * v[3][1] - v[1][0] * v[2][3] * v[3][1] - v[1][1] * v[2][0] * v[3][3] + v[1][0] * v[2][1] * v[3][3]; m.values[2][1] = v[0][3] * v[2][1] * v[3][0] - v[0][1] * v[2][3] * v[3][0] - v[0][3] * v[2][0] * v[3][1] + v[0][0] * v[2][3] * v[3][1] + v[0][1] * v[2][0] * v[3][3] - v[0][0] * v[2][1] * v[3][3]; m.values[2][2] = v[0][1] * v[1][3] * v[3][0] - v[0][3] * v[1][1] * v[3][0] + v[0][3] * v[1][0] * v[3][1] - v[0][0] * v[1][3] * v[3][1] - v[0][1] * v[1][0] * v[3][3] + v[0][0] * v[1][1] * v[3][3]; m.values[2][3] = v[0][3] * v[1][1] * v[2][0] - v[0][1] * v[1][3] * v[2][0] - v[0][3] * v[1][0] * v[2][1] + v[0][0] * v[1][3] * v[2][1] + v[0][1] * v[1][0] * v[2][3] - v[0][0] * v[1][1] * v[2][3]; m.values[3][0] = v[1][2] * v[2][1] * v[3][0] - v[1][1] * v[2][2] * v[3][0] - v[1][2] * v[2][0] * v[3][1] + v[1][0] * v[2][2] * v[3][1] + v[1][1] * v[2][0] * v[3][2] - v[1][0] * v[2][1] * v[3][2]; m.values[3][1] = v[0][1] * v[2][2] * v[3][0] - v[0][2] * v[2][1] * v[3][0] + v[0][2] * v[2][0] * v[3][1] - v[0][0] * v[2][2] * v[3][1] - v[0][1] * v[2][0] * v[3][2] + v[0][0] * v[2][1] * v[3][2]; m.values[3][2] = v[0][2] * v[1][1] * v[3][0] - v[0][1] * v[1][2] * v[3][0] - v[0][2] * v[1][0] * v[3][1] + v[0][0] * v[1][2] * v[3][1] + v[0][1] * v[1][0] * v[3][2] - v[0][0] * v[1][1] * v[3][2]; m.values[3][3] = v[0][1] * v[1][2] * v[2][0] - v[0][2] * v[1][1] * v[2][0] + v[0][2] * v[1][0] * v[2][1] - v[0][0] * v[1][2] * v[2][1] - v[0][1] * v[1][0] * v[2][2] + v[0][0] * v[1][1] * v[2][2]; m /= d; return m; } //----------------------------------------------------------------------------- template matrix& matrix::invert (void) { auto m = *this; m.invert (); *this = m; return *this; } //----------------------------------------------------------------------------- template matrix matrix::inverse_affine (void) const { return matrix(*this).invert_affine (); } //----------------------------------------------------------------------------- template matrix& matrix::invert_affine (void) { CHECK_HARD (is_affine ()); // inv ([ M b ] == [ inv(M) -inv(M).b ] // [ 0 1 ]) [ 0 1 ] // Invert the 3x3 M T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]); T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]); T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]); T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]); T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]); T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]); T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]); T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]); T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]); T d = values[0][0] * A + values[0][1] * B + values[0][2] * C; CHECK_NEQ (d, 0.0); values[0][0] = A / d; values[0][1] = D / d; values[0][2] = G / d; values[1][0] = B / d; values[1][1] = E / d; values[1][2] = H / d; values[2][0] = C / d; values[2][1] = F / d; values[2][2] = K / d; // Multiply the b T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3]; T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3]; T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3]; values[0][3] = b0; values[1][3] = b1; values[2][3] = b2; return *this; } //----------------------------------------------------------------------------- template T matrix::det (void) const { return values[0][3] * values[1][2] * values[2][1] * values[3][0] - values[0][2] * values[1][3] * values[2][1] * values[3][0] - values[0][3] * values[1][1] * values[2][2] * values[3][0] + values[0][1] * values[1][3] * values[2][2] * values[3][0] + values[0][2] * values[1][1] * values[2][3] * values[3][0] - values[0][1] * values[1][2] * values[2][3] * values[3][0] - values[0][3] * values[1][2] * values[2][0] * values[3][1] + values[0][2] * values[1][3] * values[2][0] * values[3][1] + values[0][3] * values[1][0] * values[2][2] * values[3][1] - values[0][0] * values[1][3] * values[2][2] * values[3][1] - values[0][2] * values[1][0] * values[2][3] * values[3][1] + values[0][0] * values[1][2] * values[2][3] * values[3][1] + values[0][3] * values[1][1] * values[2][0] * values[3][2] - values[0][1] * values[1][3] * values[2][0] * values[3][2] - values[0][3] * values[1][0] * values[2][1] * values[3][2] + values[0][0] * values[1][3] * values[2][1] * values[3][2] + values[0][1] * values[1][0] * values[2][3] * values[3][2] - values[0][0] * values[1][1] * values[2][3] * values[3][2] - values[0][2] * values[1][1] * values[2][0] * values[3][3] + values[0][1] * values[1][2] * values[2][0] * values[3][3] + values[0][2] * values[1][0] * values[2][1] * values[3][3] - values[0][0] * values[1][2] * values[2][1] * values[3][3] - values[0][1] * values[1][0] * values[2][2] * values[3][3] + values[0][0] * values[1][1] * values[2][2] * values[3][3]; } //----------------------------------------------------------------------------- template matrix matrix::operator* (const matrix &rhs) const { matrix m; for (unsigned row = 0; row < 4; ++row) { for (unsigned col = 0; col < 4; ++col) { m.values[row][col] = T {0}; for (unsigned inner = 0; inner < 4; ++inner) m.values[row][col] += values[row][inner] * rhs.values[inner][col]; } } return m; } //----------------------------------------------------------------------------- template vector<4,T> matrix::operator* (const vector<4,T> &rhs) const { return vector<4,T> { values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w, values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w, values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w, values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w }; } //----------------------------------------------------------------------------- template matrix& matrix::operator*= (T f){ for (size_t i = 0; i < 4; ++i) for (size_t j = 0; j < 4; ++j) values[i][j] *= f; return *this; } //----------------------------------------------------------------------------- template matrix matrix::operator/ (T s) const { matrix m; for (size_t r = 0; r < m.rows; ++r) for (size_t c = 0; c < m.cols; ++c) m.values[r][c] = values[r][c] / s; return m; } //----------------------------------------------------------------------------- template matrix& matrix::operator/= (T s) { for (size_t r = 0; r < rows; ++r) for (size_t c = 0; c < cols; ++c) values[r][c] /= s; return *this; } //----------------------------------------------------------------------------- template bool matrix::operator== (const matrix &rhs) const { for (size_t r = 0; r < rows; ++r) for (size_t c = 0; c < cols; ++c) if (!almost_equal (rhs.values[r][c], values[r][c])) return false; return true; } //----------------------------------------------------------------------------- template util::point<3,T> matrix::to_local (const util::point<3,T> &p) const { CHECK_SOFT (is_affine ()); return { p.x * values[0][0] + p.y * values[0][1] + p.z * values[0][2] + values[0][3], p.x * values[1][0] + p.y * values[1][1] + p.z * values[1][2] + values[1][3], p.x * values[2][0] + p.y * values[2][1] + p.z * values[2][2] + values[2][3] }; } //----------------------------------------------------------------------------- template util::point<3,T> matrix::to_global (const util::point<3,T> &p) const { return inverse ().to_local (p); } //----------------------------------------------------------------------------- template bool matrix::is_affine (void) const { return exactly_equal (values[3][0], T {0}) && exactly_equal (values[3][1], T {0}) && exactly_equal (values[3][2], T {0}) && exactly_equal (values[3][3], T {1}); } //----------------------------------------------------------------------------- template matrix matrix::ortho (T left, T right, T bottom, T top, T near, T far) { CHECK_GT (far, near); T tx = - (right + left) / (right - left); T ty = - (top + bottom) / (top - bottom); T tz = - (far + near) / (far - near); T rl = 2 / (right - left); T tb = 2 / (top - bottom); T fn = 2 / (far - near); return { { { rl, 0, 0, tx }, { 0, tb, 0, ty }, { 0, 0, fn, tz }, { 0, 0, 0, 1 }, } }; } //----------------------------------------------------------------------------- template matrix matrix::ortho2D (T left, T right, T bottom, T top) { return ortho (left, right, bottom, top, -1, 1); } //----------------------------------------------------------------------------- template matrix matrix::perspective (T fov, T aspect, T near, T far) { T f = std::tan (fov / 2); T tx = 1 / (f * aspect); T ty = 1 / f; T z1 = (far + near) / (near - far); T z2 = (2 * far * near) / (near - far); return { { { tx, 0, 0, 0 }, { 0, ty, 0, 0 }, { 0, 0, z1, z2 }, { 0, 0, -1, 0 } } }; } //----------------------------------------------------------------------------- // Emulates gluLookAt template matrix matrix::look_at (util::point<3,T> eye, util::point<3,T> centre, util::vector<3,T> up) { const auto f = eye.to (centre).normalise (); const auto s = cross (f, up).normalise (); const auto u = cross (s, f); return { { { s.x, s.y, s.z, -dot (s, eye) }, { u.x, u.y, u.z, -dot (u, eye) }, { -f.x, -f.y, -f.z, dot (f, eye) }, { 0, 0, 0, 1 }, } }; } //----------------------------------------------------------------------------- template matrix matrix::translate (util::vector<3,T> v) { return { { { 1.f, 0.f, 0.f, v.x }, { 0.f, 1.f, 0.f, v.y }, { 0.f, 0.f, 1.f, v.z }, { 0.f, 0.f, 0.f, 1.f }, } }; } //----------------------------------------------------------------------------- template const matrix matrix::IDENTITY = { { { 1, 0, 0, 0 }, { 0, 1, 0, 0 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 } } }; template const matrix matrix::ZEROES = { { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } } }; //----------------------------------------------------------------------------- namespace util { template struct matrix; template struct matrix; } //----------------------------------------------------------------------------- namespace util { template std::ostream& operator<< (std::ostream &os, const matrix &m) { os << "{ {" << m.values[0][0] << ", " << m.values[0][1] << ", " << m.values[0][2] << ", " << m.values[0][3] << "}, " << "{" << m.values[1][0] << ", " << m.values[1][1] << ", " << m.values[1][2] << ", " << m.values[1][3] << "}, " << "{" << m.values[2][0] << ", " << m.values[2][1] << ", " << m.values[2][2] << ", " << m.values[2][3] << "}, " << "{" << m.values[3][0] << ", " << m.values[3][1] << ", " << m.values[3][2] << ", " << m.values[3][3] << "} }"; return os; } } template std::ostream& util::operator<< (std::ostream&, const matrix&); template std::ostream& util::operator<< (std::ostream&, const matrix&);