/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2015 Danny Robson */ #include "ray.hpp" #include "iostream.hpp" #include "ops.hpp" #include "../coord/iostream.hpp" #include "../debug.hpp" using util::geom::ray; /////////////////////////////////////////////////////////////////////////////// /// returns the distance along the ray in a ray-plane intersection /// /// returns inf if parallel /// returns 0 if corayar template T ray::intersect (plane q) const { return dot (q.coefficients, origin. template redim (1)) / dot (q.coefficients, direction.template redim (0)); } ///---------------------------------------------------------------------------- /// returns the distance from origin to AABB intersection /// /// returns NaN on miss /// returns NaN if behind template T ray::intersect (aabb r) const { auto t1 = (r.lo - origin) / direction; auto t2 = (r.hi - origin) / direction; auto vmin = min (t1, t2); auto vmax = max (t1, t2); auto tmin = max (vmin); auto tmax = min (vmax); // closest intersection is behind us if (tmax < 0) return std::numeric_limits::quiet_NaN (); // missed intersection if (tmin > tmax) return std::numeric_limits::quiet_NaN (); return tmin; } ///---------------------------------------------------------------------------- /// returns the smallest distance from ray origin to a sphere intersection /// /// returns NaN on miss /// returns NaN if behind template T ray::intersect (sphere s) const { T b = dot (direction, origin - s.centre); T c = dot (origin - s.centre, origin - s.centre) - s.radius * s.radius; T D = b * b - c; if (D < 0) return std::numeric_limits::quiet_NaN (); auto t_ = std::sqrt (D); auto t0 = -b + t_; auto t1 = -b - t_; return t1 >= 0 ? t1 : t0 >= 0 ? t0 : std::numeric_limits::quiet_NaN (); } /////////////////////////////////////////////////////////////////////////////// /// returns the closest parameter along the ray to a given point template T ray::closest (point q) const { // project the origin-point difference onto the direction return dot (origin - q, direction); } //----------------------------------------------------------------------------- template util::point ray::at (T t) const { return origin + direction * t; } /////////////////////////////////////////////////////////////////////////////// template std::ostream& util::geom::operator<< (std::ostream &os, ray r) { return os << "ray(" << r.origin << ',' << r.direction << ')'; } template std::ostream& util::geom::operator<< (std::ostream&, ray<3,float>); template std::ostream& util::geom::operator<< (std::ostream&, ray<3,double>); /////////////////////////////////////////////////////////////////////////////// template struct util::geom::ray<2,float>; template struct util::geom::ray<3,float>;