/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2014-2015 Danny Robson */ #include "maths.hpp" #include /////////////////////////////////////////////////////////////////////////////// /// expand point to use homogenous coordinates of a higher dimension. /// ie, fill with (0,..,0,1) template template util::point util::point::homog (void) const { static_assert (D > S, "homog will not overwrite data"); point out; // Copy the existing data auto c = std::copy (this->begin (), this->end (), out.begin ()); // Fill until the second last element with zeros auto f = std::fill_n (c, D - S - 1, T{0}); // Last element should be one *f = T{1}; return out; } /////////////////////////////////////////////////////////////////////////////// template constexpr util::point util::point::origin (void) { return point {0}; } /////////////////////////////////////////////////////////////////////////////// template typename std::common_type::type util::distance (point a, point b) { using type_t = typename std::common_type::type; static_assert (std::is_floating_point::value, "sqrt likely requires fractional types"); return std::sqrt (distance2 (a, b)); } /////////////////////////////////////////////////////////////////////////////// template constexpr typename std::common_type::type util::distance2 (point a, point b) { typename std::common_type::type sum {0}; for (size_t i = 0; i < S; ++i) sum += pow2 (a.data[i] - b.data[i]); return sum; } /////////////////////////////////////////////////////////////////////////////// template typename std::common_type::type util::octile (point2 a, point2 b) { using type_t = typename std::common_type::type; static_assert (!std::is_integral::value, "octile requires more than integer precision"); const type_t D1 = 1; const type_t D2 = std::sqrt (type_t {2}); auto diff = util::abs (a - b); // distance for axis-aligned walks auto axis = D1 * (diff.x + diff.y); // the savings from diagonal walks auto diag = (D2 - 2 * D1) * util::min (diff); return axis + diag; } /////////////////////////////////////////////////////////////////////////////// template constexpr typename std::common_type::type util::manhattan (point a, point b) { typename std::common_type::type sum {0}; for (size_t i = 0; i < S; ++i) sum += util::abs (a.data[i] - b.data[i]); return sum; } /////////////////////////////////////////////////////////////////////////////// template constexpr typename std::common_type::type util::chebyshev(point a, point b) { return util::max (abs (a - b)); }