/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Copyright 2012-2015 Danny Robson */ #include "noise/basis.hpp" #include "noise/lut.hpp" #include "../debug.hpp" #include "../point.hpp" #include "../random.hpp" #include "../vector.hpp" #include "../hash/murmur/murmur2.hpp" #include using util::noise::basis; using util::noise::value; using util::noise::gradient; using util::noise::cellular; /////////////////////////////////////////////////////////////////////////////// // Generate a type from [-UNIT..UNIT] template T generate (intmax_t x, intmax_t y, uint64_t seed) { using util::hash::murmur2::mix; T v = mix (seed, mix (uint64_t (y), uint64_t (x))) & 0xffff; v = v / T{0xffff} * 2 - 1; CHECK_GE (v, T{0}); CHECK_LE (v, T{1}); return v; } //----------------------------------------------------------------------------- template <> util::vector2d generate (intmax_t x, intmax_t y, uint64_t seed) { using util::hash::murmur2::mix; auto u = mix (seed, mix (uint64_t (x), uint64_t (y))); auto v = mix (u, seed); auto r = util::vector2d { (u & 0xffff) / double{0xffff}, (v & 0xffff) / double{0xffff} } * 2.0 - 1.0; CHECK_GE (r, double{-1}); CHECK_LE (r, double{ 1}); return r; } //----------------------------------------------------------------------------- template <> util::vector2f generate (intmax_t x, intmax_t y, uint64_t seed) { using util::hash::murmur2::mix; auto u = mix (seed, mix (uint64_t (x), uint64_t (y))); auto v = mix (u, seed); auto r = util::vector2f { (u & 0xffff) / float{0xffff}, (v & 0xffff) / float{0xffff} } * 2.f - 1.f; CHECK_GE (r, float (-1)); CHECK_LE (r, float ( 1)); return r; } /////////////////////////////////////////////////////////////////////////////// template basis::basis (seed_t _seed): seed (_seed) { ; } //----------------------------------------------------------------------------- template basis::basis (): seed (util::random ()) { ; } //----------------------------------------------------------------------------- template basis::~basis () { ; } //----------------------------------------------------------------------------- template T basis::operator() (T, T) const { unreachable (); } //----------------------------------------------------------------------------- namespace util { namespace noise { template struct basis; template struct basis; } } /////////////////////////////////////////////////////////////////////////////// template L> value::value (seed_t _seed): basis (_seed) { ; } //----------------------------------------------------------------------------- template L> value::value () { ; } //----------------------------------------------------------------------------- template L> util::range value::bounds (void) const { return { -1, 1 }; } //----------------------------------------------------------------------------- template L> T value::operator() (T x, T y) const { intmax_t x_int = static_cast (x); intmax_t y_int = static_cast (y); T x_fac = x - x_int; T y_fac = y - y_int; // Shift the coordinate system down a little to ensure we get unit weights // for the lerp. It's better to do this than abs the fractional portion so // we don't get reflections along the origin. if (x < 0) { x_fac = 1 + x_fac; x_int -= 1; } if (y < 0) { y_fac = 1 + y_fac; y_int -= 1; } // Generate the four corner values T p0 = generate (x_int, y_int, this->seed); T p1 = generate (x_int + 1, y_int, this->seed); T p2 = generate (x_int, y_int + 1, this->seed); T p3 = generate (x_int + 1, y_int + 1, this->seed); // Interpolate on one dimension, then the other. return L (L (p0, p1, x_fac), L (p2, p3, x_fac), y_fac); } //----------------------------------------------------------------------------- namespace util { namespace noise { template struct value; template struct value; template struct value; template struct value; template struct value; template struct value; template struct value; template struct value; } } /////////////////////////////////////////////////////////////////////////////// template L> gradient::gradient (seed_t _seed): basis (_seed) { ; } //----------------------------------------------------------------------------- template L> gradient::gradient () { ; } //----------------------------------------------------------------------------- template L> util::range gradient::bounds (void) const { return { -std::sqrt(T{2}) / 2, std::sqrt (T{2}) / 2 }; } //----------------------------------------------------------------------------- template L> T gradient::operator() (T x, T y) const { intmax_t x_int = static_cast (x); intmax_t y_int = static_cast (y); T x_fac = x - x_int; T y_fac = y - y_int; // Shift the coordinate system down a little to ensure we get unit weights // for the lerp. It's better to do this than abs the fractional portion so // we don't get reflections along the origin. if (x < 0) { x_fac = 1 + x_fac; x_int -= 1; } if (y < 0) { y_fac = 1 + y_fac; y_int -= 1; } // Generate the four corner values. It's not strictly necessary to // normalise the values, but we get a more consistent and visually // appealing range of outputs with normalised values. auto p0 = generate> (x_int, y_int, this->seed).normalise (); auto p1 = generate> (x_int + 1, y_int, this->seed).normalise (); auto p2 = generate> (x_int, y_int + 1, this->seed).normalise (); auto p3 = generate> (x_int + 1, y_int + 1, this->seed).normalise (); T v0 = p0.x * x_fac + p0.y * y_fac; T v1 = p1.x * (x_fac - 1) + p1.y * y_fac; T v2 = p2.x * x_fac + p2.y * (y_fac - 1); T v3 = p3.x * (x_fac - 1) + p3.y * (y_fac - 1); return L (L (v0, v1, x_fac), L (v2, v3, x_fac), y_fac); } //----------------------------------------------------------------------------- namespace util { namespace noise { template struct gradient; template struct gradient; template struct gradient; template struct gradient; template struct gradient; template struct gradient; } } /////////////////////////////////////////////////////////////////////////////// template cellular::cellular (seed_t _seed): basis (_seed) { ; } //----------------------------------------------------------------------------- template cellular::cellular () { ; } //----------------------------------------------------------------------------- template util::range cellular::bounds (void) const { return { 0.0, 1.5 }; } //----------------------------------------------------------------------------- template T cellular::operator() (T x, T y) const { intmax_t x_int = static_cast (x); intmax_t y_int = static_cast (y); T x_fac = x - x_int; T y_fac = y - y_int; // Generate the four corner values. It's not strictly necessary to // normalise the values, but we get a more consistent and visually // appealing range of outputs with normalised values. if (x < 0) { x_fac = 1 + x_fac; x_int -= 1; } if (y < 0) { y_fac = 1 + y_fac; y_int -= 1; } // +---+---+---+ // | 0 | 1 | 2 | // +---+---+---+ // | 3 | 4 | 5 | // +---+-------+ // | 6 | 7 | 8 | // +---+---+---+ point<2,T> centre = { x_fac, y_fac }; T distances[9] = { std::numeric_limits::quiet_NaN () }; T *cursor = distances; for (signed y_off = -1; y_off <= 1 ; ++y_off) for (signed x_off = -1; x_off <= 1; ++x_off) { auto pos = point<2,T> (T (x_off), T (y_off)); auto off = generate> (x_int + x_off, y_int + y_off, this->seed); off += T{1}; off /= T{2}; CHECK (off.x >= 0 && off.x <= 1); CHECK (off.y >= 0 && off.y <= 1); pos += off; *cursor++ = pos.distance2 (centre); } std::sort (std::begin (distances), std::end (distances)); CHECK_GE (distances[0], 0); CHECK (bounds ().contains (distances[0])); return distances[0]; } //----------------------------------------------------------------------------- namespace util { namespace noise { template struct cellular; template struct cellular; } }