maths: remove const/pure attributes

const/pure attributes are causing inconsitencies for various functions.
it's safer to just not use them until there's a more thorough
investigation of their impact.
This commit is contained in:
Danny Robson 2015-11-13 17:15:08 +11:00
parent 89fe57b65b
commit f2bd6501e2

View File

@ -17,8 +17,9 @@
#ifndef __MATHS_HPP
#define __MATHS_HPP
#include "debug.hpp"
#include "types/traits.hpp"
#include "./debug.hpp"
#include "./types/traits.hpp"
#include "./float.hpp"
#include <cmath>
#include <cstdint>
@ -27,6 +28,13 @@
#include <utility>
///////////////////////////////////////////////////////////////////////////////
// NOTE: You may be tempted to add all sorts of performance enhancing
// attributes (like gnu::const or gnu::pure). DO NOT DO THIS WITHOUT EXTENSIVE
// TESTING. Just about everything will break in some way with these attributes.
//
// In particular: it is safest to apply these only to leaf functions
///////////////////////////////////////////////////////////////////////////////
namespace util {
@ -45,8 +53,10 @@ namespace util {
namespace util {
template <typename T>
constexpr T
pow2 [[gnu::const]] (T value)
{ return value * value; }
pow2 [[gnu::const]] (T value)
{
return value * value;
}
}
//-----------------------------------------------------------------------------
@ -60,26 +70,26 @@ namespace util {
//-----------------------------------------------------------------------------
template <typename T>
bool
is_pow2 [[gnu::const]] (T value);
is_pow2 (T value);
//-----------------------------------------------------------------------------
// Logarithms
template <typename T>
T
log2 [[gnu::const]] (T val);
log2 (T val);
template <typename T>
T
log2up [[gnu::const]] (T val);
log2up (T val);
//-----------------------------------------------------------------------------
// Roots
template <typename T>
double
rootsquare [[gnu::const]] (T a, T b);
rootsquare (T a, T b);
//-----------------------------------------------------------------------------
@ -90,7 +100,7 @@ typename std::common_type<
std::enable_if_t<std::is_integral<T>::value,T>,
std::enable_if_t<std::is_integral<U>::value,U>
>::type
round_to [[gnu::const]] (T value, U size)
round_to (T value, U size)
{
if (value % size == 0)
return value;
@ -101,12 +111,12 @@ round_to [[gnu::const]] (T value, U size)
template <typename T>
T
round_pow2 [[gnu::const]] (T value);
round_pow2 (T value);
template <typename T, typename U>
constexpr T
divup [[gnu::const]] (const T a, const U b)
divup (const T a, const U b)
{ return (a + b - 1) / b; }
@ -114,14 +124,14 @@ divup [[gnu::const]] (const T a, const U b)
// Classification
template <typename T>
bool
is_integer [[gnu::const]] (const T& value);
is_integer (const T& value);
//-----------------------------------------------------------------------------
// Properties
template <typename T>
unsigned
digits [[gnu::const]] (const T& value);
digits (const T& value);
//-----------------------------------------------------------------------------
@ -248,7 +258,7 @@ constexpr T E = T(2.71828182845904523536028747135266250);
template <typename T>
constexpr T
to_degrees [[gnu::const]] (T radians)
to_degrees (T radians)
{
static_assert (std::is_floating_point<T>::value, "undefined for integral types");
return radians * 180 / PI<T>;
@ -257,7 +267,7 @@ to_degrees [[gnu::const]] (T radians)
template <typename T>
constexpr T
to_radians [[gnu::const]] (T degrees)
to_radians (T degrees)
{
static_assert (std::is_floating_point<T>::value, "undefined for integral types");
return degrees / 180 * PI<T>;
@ -267,7 +277,7 @@ to_radians [[gnu::const]] (T degrees)
//! Normalised sinc function
template <typename T>
constexpr T
sincn [[gnu::const]] (T x)
sincn (T x)
{
return almost_zero (x) ? 1 : std::sin (PI<T> * x) / (PI<T> * x);
}
@ -276,7 +286,7 @@ sincn [[gnu::const]] (T x)
//! Unnormalised sinc function
template <typename T>
constexpr T
sincu [[gnu::const]] (T x)
sincu (T x)
{
return almost_zero (x) ? 1 : std::sin (x) / x;
}
@ -284,7 +294,7 @@ sincu [[gnu::const]] (T x)
//-----------------------------------------------------------------------------
constexpr uintmax_t
factorial [[gnu::const]] (unsigned i)
factorial (unsigned i)
{
return i <= 1 ? 0 : i * factorial (i - 1);
}
@ -292,7 +302,7 @@ factorial [[gnu::const]] (unsigned i)
/// stirlings approximation of factorials
constexpr uintmax_t
stirling [[gnu::const]] (unsigned n)
stirling (unsigned n)
{
return static_cast<uintmax_t> (
std::sqrt (2 * PI<float> * n) * std::pow (n / E<float>, n)
@ -301,7 +311,7 @@ stirling [[gnu::const]] (unsigned n)
constexpr uintmax_t
combination [[gnu::const]] (unsigned n, unsigned k)
combination (unsigned n, unsigned k)
{
return factorial (n) / (factorial (k) / (factorial (n - k)));
}
@ -337,7 +347,7 @@ fsum (InputIt first, InputIt last)
namespace util {
template <typename T>
constexpr T
min [[gnu::const]] (const T a)
min (const T a)
{ return a; }
@ -347,7 +357,7 @@ namespace util {
std::is_integral<typename std::decay<T>::type>::value == std::is_integral<typename std::decay<U>::type>::value,
typename std::common_type<T,U>::type
>::type
min [[gnu::const]] (const T a, const U b, Args ...args)
min (const T a, const U b, Args ...args)
{
return min (a < b ? a : b, std::forward<Args> (args)...);
}
@ -357,7 +367,7 @@ namespace util {
/// Variadic maximum
template <typename T>
constexpr T
max [[gnu::const]] (const T a)
max (const T a)
{ return a; }
@ -367,7 +377,7 @@ namespace util {
std::is_integral<typename std::decay<T>::type>::value == std::is_integral<typename std::decay<U>::type>::value,
typename std::common_type<T,U>::type
>::type
max [[gnu::const]] (const T a, const U b, Args ...args)
max (const T a, const U b, Args ...args)
{
return max (a > b ? a : b, std::forward<Args> (args)...);
}
@ -379,7 +389,7 @@ namespace util {
// min/max clamping
template <typename T, typename U, typename V>
constexpr T
limit [[gnu::const]] (const T val, const U lo, const V hi)
limit (const T val, const U lo, const V hi)
{
lo <= hi ? (void)0 : panic ();
@ -392,7 +402,7 @@ limit [[gnu::const]] (const T val, const U lo, const V hi)
// clamped cubic hermite interpolation
template <typename T>
T
smoothstep [[gnu::const]] (T a, T b, T x)
smoothstep (T a, T b, T x)
{
CHECK_LE(a, b);
x = limit ((x - a) / (b - a), T{0}, T{1});
@ -411,7 +421,7 @@ constexpr
typename std::enable_if<
!std::is_floating_point<T>::value && std::is_floating_point<U>::value, U
>::type
renormalise [[gnu::const]] (T t)
renormalise (T t)
{
return t / static_cast<U> (std::numeric_limits<T>::max ());
}
@ -423,7 +433,7 @@ constexpr
typename std::enable_if<
std::is_floating_point<T>::value && !std::is_floating_point<U>::value, U
>::type
renormalise [[gnu::const]] (T t)
renormalise (T t)
{
// Ideally std::ldexp would be involved but it complicates handing
// integers with greater precision than our floating point type. Also it
@ -458,7 +468,7 @@ typename std::enable_if<
std::is_floating_point<U>::value &&
!std::is_same<T,U>::value, U
>::type
renormalise [[gnu::const]] (T t)
renormalise (T t)
{
return static_cast<U> (t);
}
@ -472,7 +482,7 @@ typename std::enable_if<
std::is_integral<U>::value &&
(sizeof (T) > sizeof (U)), U
>::type
renormalise [[gnu::const]] (T t)
renormalise (T t)
{
static_assert (sizeof (T) > sizeof (U),
"assumes right shift is sufficient");
@ -491,7 +501,7 @@ typename std::enable_if<
std::is_integral<U>::value &&
sizeof (T) < sizeof (U), U
>::type
renormalise [[gnu::const]] (T t)
renormalise (T t)
{
static_assert (sizeof (T) < sizeof (U),
"assumes bit creation is required to fill space");
@ -518,7 +528,7 @@ constexpr
typename std::enable_if<
std::is_same<T,U>::value, U
>::type
renormalise [[gnu::const]] (T t)
renormalise (T t)
{ return t; }
#include "maths.ipp"