matrix: parameterise on element type

This commit is contained in:
Danny Robson 2014-07-07 15:17:45 +10:00
parent 6e2a78fc3b
commit c9e46f986e
2 changed files with 80 additions and 53 deletions

View File

@ -14,7 +14,7 @@
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2011-2012 Danny Robson <danny@nerdcruft.net>
* Copyright 2011-2014 Danny Robson <danny@nerdcruft.net>
*/
#include "matrix.hpp"
@ -26,8 +26,10 @@
using namespace util;
//-----------------------------------------------------------------------------
template <typename T>
void
matrix::scale (double x, double y, double z) {
matrix<T>::scale (T x, T y, T z) {
CHECK_HARD (is_affine ());
values[0][0] *= x;
values[1][1] *= y;
@ -35,8 +37,10 @@ matrix::scale (double x, double y, double z) {
}
//-----------------------------------------------------------------------------
template <typename T>
void
matrix::translate (double x, double y, double z) {
matrix<T>::translate (T x, T y, T z) {
CHECK_HARD (is_affine ());
values[0][3] += x;
values[1][3] += y;
@ -44,33 +48,37 @@ matrix::translate (double x, double y, double z) {
}
matrix
matrix::inverse (void) const {
return matrix(*this).invert ();
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::inverse (void) const {
return matrix<T>(*this).invert ();
}
matrix&
matrix::invert (void) {
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>&
matrix<T>::invert (void) {
CHECK_HARD (is_affine ());
// inv ([ M b ] == [ inv(M) -inv(M).b ]
// [ 0 1 ]) [ 0 1
// Invert the 3x3 M
double A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
double B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
double C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
double D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
double E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
double F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
double G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
double H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
double K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
double det = values[0][0] * A + values[0][1] * B + values[0][2] * C;
T det = values[0][0] * A + values[0][1] * B + values[0][2] * C;
CHECK_NEQ (det, 0.0);
values[0][0] = A / det;
@ -84,9 +92,9 @@ matrix::invert (void) {
values[2][2] = K / det;
// Multiply the b
double b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
double b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
double b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
values[0][3] = b0;
values[1][3] = b1;
@ -96,9 +104,11 @@ matrix::invert (void) {
}
matrix
matrix::operator* (const matrix &rhs) const {
matrix m;
//-----------------------------------------------------------------------------
template <typename T>
matrix<T>
matrix<T>::operator* (const matrix<T> &rhs) const {
matrix<T> m;
memset (m.values, 0, sizeof (m.values));
for (unsigned i = 0; i < 4; ++i)
@ -110,8 +120,10 @@ matrix::operator* (const matrix &rhs) const {
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<3>
matrix::to_local (const util::point<3> &p) const {
matrix<T>::to_local (const util::point<3> &p) const {
CHECK_SOFT (is_affine ());
return { p.x * values[0][0] +
@ -126,38 +138,51 @@ matrix::to_local (const util::point<3> &p) const {
}
//-----------------------------------------------------------------------------
template <typename T>
util::point<3>
matrix::to_global (const util::point<3> &p) const {
matrix<T>::to_global (const util::point<3> &p) const {
return inverse ().to_local (p);
}
//-----------------------------------------------------------------------------
template <typename T>
bool
matrix::is_affine (void) const {
return exactly_equal (values[3][0], 0.0) &&
exactly_equal (values[3][1], 0.0) &&
exactly_equal (values[3][2], 0.0) &&
exactly_equal (values[3][3], 1.0);
matrix<T>::is_affine (void) const {
return exactly_equal (values[3][0], static_cast<T> (0)) &&
exactly_equal (values[3][1], static_cast<T> (0)) &&
exactly_equal (values[3][2], static_cast<T> (0)) &&
exactly_equal (values[3][3], static_cast<T> (1));
}
const matrix
matrix::IDENTITY = { { { 1.0, 0.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0, 0.0 },
{ 0.0, 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 0.0, 1.0 } } };
//-----------------------------------------------------------------------------
template <typename T>
const matrix<T>
matrix<T>::IDENTITY = { { { 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 } } };
const matrix
matrix::ZEROES = { { { 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0 } } };
template <typename T>
const matrix<T>
matrix<T>::ZEROES = { { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } } };
//-----------------------------------------------------------------------------
template struct matrix<float>;
template struct matrix<double>;
//-----------------------------------------------------------------------------
template <typename T>
std::ostream&
operator<< (std::ostream &os, const matrix &m) {
operator<< (std::ostream &os, const matrix<T> &m) {
os << "{ {" << m.values[0][0] << ", "
<< m.values[0][1] << ", "
<< m.values[0][2] << ", "

View File

@ -14,7 +14,7 @@
* You should have received a copy of the GNU General Public License
* along with libgim. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright 2011-2012 Danny Robson <danny@nerdcruft.net>
* Copyright 2011-2014 Danny Robson <danny@nerdcruft.net>
*/
#ifndef __UTIL_MATRIX_HPP
@ -25,27 +25,29 @@
#include <iostream>
namespace util {
template <typename T>
struct matrix {
double values[4][4];
T values[4][4];
void scale (double x, double y, double z);
void translate (double x, double y, double z);
void scale (T x, T y, T z);
void translate (T x, T y, T z);
matrix inverse (void) const;
matrix& invert (void);
matrix<T> inverse (void) const;
matrix<T>& invert (void);
matrix operator* (const matrix&) const;
matrix<T> operator* (const matrix<T>&) const;
point<3> to_local (const point<3> &p) const;
point<3> to_global (const point<3> &p) const;
bool is_affine (void) const;
static const matrix IDENTITY;
static const matrix ZEROES;
static const matrix<T> IDENTITY;
static const matrix<T> ZEROES;
};
}
std::ostream& operator<< (std::ostream&, const util::matrix&);
template <typename T>
std::ostream& operator<< (std::ostream&, const util::matrix<T>&);
#endif