vector: add hughes-moeller make_basis
This commit is contained in:
parent
999ec1c35c
commit
b8253536ea
49
vector.hpp
49
vector.hpp
@ -17,11 +17,13 @@
|
||||
#ifndef CRUFT_UTIL_VECTOR_HPP
|
||||
#define CRUFT_UTIL_VECTOR_HPP
|
||||
|
||||
#include "./coord/fwd.hpp"
|
||||
#include "./coord.hpp"
|
||||
#include "coord/fwd.hpp"
|
||||
#include "coord/ops.hpp"
|
||||
#include "coord.hpp"
|
||||
|
||||
#include "maths.hpp"
|
||||
#include "debug.hpp"
|
||||
#include "json/fwd.hpp"
|
||||
#include "maths.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
#include <cmath>
|
||||
@ -80,8 +82,6 @@ namespace util {
|
||||
//-------------------------------------------------------------------------
|
||||
// given a vector find two vectors which produce an orthonormal basis.
|
||||
//
|
||||
// we use frisvad's method, avoids explicit normalisation. a good
|
||||
// alternative is hughes-moeller, but the paper is hard to find.
|
||||
template <typename T>
|
||||
std::pair<
|
||||
util::vector<3,T>,
|
||||
@ -89,6 +89,10 @@ namespace util {
|
||||
>
|
||||
make_basis (const util::vector<3,T> n)
|
||||
{
|
||||
#if 0
|
||||
// frisvad's method avoids explicit normalisation. a good alternative
|
||||
// is hughes-moeller, but the paper is hard to find.
|
||||
CHECK (is_normalised (n));
|
||||
|
||||
// avoid a singularity
|
||||
if (n.z < -T(0.9999999)) {
|
||||
@ -101,10 +105,37 @@ namespace util {
|
||||
const T a = 1 / (1 + n.z);
|
||||
const T b = -n.x * n.y * a;
|
||||
|
||||
return {
|
||||
{ 1 - n.x * n.x * a, b, -n.x },
|
||||
{ b, 1 - n.y * n.y * a, -n.y }
|
||||
};
|
||||
const util::vector<3,T> v0 { 1 - n.x * n.x * a, b, -n.x };
|
||||
const util::vector<3,T> v1 { b, 1 - n.y * n.y * a, -n.y };
|
||||
|
||||
CHECK (is_normalised (v0));
|
||||
CHECK (is_normalised (v1));
|
||||
|
||||
return { v0, v1 };
|
||||
#else
|
||||
// huges-moeller isn't as fast, but is more accurate
|
||||
if(util::abs (n.x) > util::abs (n.z))
|
||||
{
|
||||
// Normalization factor for b2
|
||||
auto const a = rsqrt (n.x * n.x + n.y * n.y);
|
||||
util::vector<3,T> b1 { -n.y * a, n.x * a, 0 };
|
||||
|
||||
// Cross product using that b2 has a zero component
|
||||
util::vector<3,T> b0 { b1.y * n.z, -b1.x * n.z, b1.x * n.y - b1.y * n.x };
|
||||
|
||||
return { b0, b1 };
|
||||
}
|
||||
else
|
||||
{
|
||||
// Normalization factor for b2
|
||||
auto const a = rsqrt (n.y * n.y + n.z * n.z);
|
||||
util::vector<3,T> b1 { 0.0f, -n.z * a, n.y * a };
|
||||
// Cross product using that b2 has a zero component
|
||||
util::vector<3,T> b0 { b1.y * n.z - b1.z * n.y, b1.z * n.x, -b1.y * n.x };
|
||||
|
||||
return { b0, b1 };
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user