matrix: extract size dependant operations

This commit is contained in:
Danny Robson 2015-11-04 23:23:46 +11:00
parent 2ca4a7e291
commit a73fb9307c
8 changed files with 487 additions and 226 deletions

View File

@ -153,6 +153,9 @@ UTIL_FILES = \
maths.hpp \ maths.hpp \
maths.ipp \ maths.ipp \
matrix.cpp \ matrix.cpp \
matrix2.cpp \
matrix3.cpp \
matrix4.cpp \
matrix.hpp \ matrix.hpp \
matrix.ipp \ matrix.ipp \
memory.cpp \ memory.cpp \

View File

@ -25,15 +25,17 @@
using namespace util; using namespace util;
//----------------------------------------------------------------------------- ///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T> matrix<S,T>
matrix<S,T>::transposed (void) const matrix<S,T>::transposed (void) const
{ {
matrix<S,T> m; matrix<S,T> m;
for (size_t i = 0; i < S; ++i) for (size_t i = 0; i < S; ++i)
for (size_t j = 0; j < S; ++j) for (size_t j = 0; j < S; ++j)
m.values[i][j] = values[j][i]; m.values[i][j] = values[j][i];
return m; return m;
} }
@ -51,185 +53,87 @@ matrix<S,T>::transpose (void)
} }
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
matrix<S,T>::inverse (void) const {
static_assert (S == 4, "assuming 4x4 matrices");
// GLM's implementation of 4x4 matrix inversion. Should allow use of
// vector instructions.
const auto &m = values;
T Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
vector<4,T> Fac0(Coef00, Coef00, Coef02, Coef03);
vector<4,T> Fac1(Coef04, Coef04, Coef06, Coef07);
vector<4,T> Fac2(Coef08, Coef08, Coef10, Coef11);
vector<4,T> Fac3(Coef12, Coef12, Coef14, Coef15);
vector<4,T> Fac4(Coef16, Coef16, Coef18, Coef19);
vector<4,T> Fac5(Coef20, Coef20, Coef22, Coef23);
vector<4,T> Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
vector<4,T> Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
vector<4,T> Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
vector<4,T> Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
vector<4,T> Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
vector<4,T> Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
vector<4,T> Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
vector<4,T> Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
vector<4,T> SignA(+1, -1, +1, -1);
vector<4,T> SignB(-1, +1, -1, +1);
//matrix<T> Inverse(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB);
matrix<4,T> Inverse = { { { Inv0.x * SignA.x, Inv0.y * SignA.y, Inv0.z * SignA.z, Inv0.w * SignA.w },
{ Inv1.x * SignB.x, Inv1.y * SignB.y, Inv1.z * SignB.z, Inv1.w * SignB.w },
{ Inv2.x * SignA.x, Inv2.y * SignA.y, Inv2.z * SignA.z, Inv2.w * SignA.w },
{ Inv3.x * SignB.x, Inv3.y * SignB.y, Inv3.z * SignB.z, Inv3.w * SignB.w } } };
vector<4,T> Row0(Inverse.values[0][0], Inverse.values[1][0], Inverse.values[2][0], Inverse.values[3][0]);
vector<4,T> Dot0(
m[0][0] * Row0.x,
m[0][1] * Row0.y,
m[0][2] * Row0.z,
m[0][3] * Row0.w
);
T Dot1 = (Dot0.x + Dot0.y) + (Dot0.z + Dot0.w);
T OneOverDeterminant = static_cast<T>(1) / Dot1;
return Inverse * OneOverDeterminant;
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T>& matrix<S,T>&
matrix<S,T>::invert (void) { matrix<S,T>::invert (void)
{
return *this = inverse (); return *this = inverse ();
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> //template <size_t S, typename T>
matrix<S,T> //matrix<S,T>&
matrix<S,T>::inverse_affine (void) const { //matrix<S,T>::invert_affine (void)
return matrix<S,T>(*this).invert_affine (); //{
} // CHECK (is_affine ());
//
// // inv ([ M b ] == [ inv(M) -inv(M).b ]
//----------------------------------------------------------------------------- // // [ 0 1 ]) [ 0 1 ]
template <size_t S, typename T> //
matrix<S,T>& // // Invert the 3x3 M
matrix<S,T>::invert_affine (void) { // T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]);
CHECK (is_affine ()); // T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]);
// T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]);
// inv ([ M b ] == [ inv(M) -inv(M).b ] //
// [ 0 1 ]) [ 0 1 ] // T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]);
// T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]);
// Invert the 3x3 M // T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]);
T A = (values[1][1] * values[2][2] - values[1][2] * values[2][1]); //
T B = (values[1][2] * values[2][0] - values[1][0] * values[2][2]); // T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]);
T C = (values[1][0] * values[2][1] - values[1][1] * values[2][0]); // T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]);
// T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]);
T D = (values[0][2] * values[2][1] - values[0][1] * values[2][2]); //
T E = (values[0][0] * values[2][2] - values[0][2] * values[2][0]); // T d = values[0][0] * A + values[0][1] * B + values[0][2] * C;
T F = (values[2][0] * values[0][1] - values[0][0] * values[2][1]); // CHECK_NEQ (d, 0.0);
//
T G = (values[0][1] * values[1][2] - values[0][2] * values[1][1]); // values[0][0] = A / d;
T H = (values[0][2] * values[1][0] - values[0][0] * values[1][2]); // values[0][1] = D / d;
T K = (values[0][0] * values[1][1] - values[0][1] * values[1][0]); // values[0][2] = G / d;
// values[1][0] = B / d;
T d = values[0][0] * A + values[0][1] * B + values[0][2] * C; // values[1][1] = E / d;
CHECK_NEQ (d, 0.0); // values[1][2] = H / d;
// values[2][0] = C / d;
values[0][0] = A / d; // values[2][1] = F / d;
values[0][1] = D / d; // values[2][2] = K / d;
values[0][2] = G / d; //
values[1][0] = B / d; // // Multiply the b
values[1][1] = E / d; // T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3];
values[1][2] = H / d; // T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3];
values[2][0] = C / d; // T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3];
values[2][1] = F / d; //
values[2][2] = K / d; // values[0][3] = b0;
// values[1][3] = b1;
// Multiply the b // values[2][3] = b2;
T b0 = - values[0][0] * values[0][3] - values[0][1] * values[1][3] - values[0][2] * values[2][3]; //
T b1 = - values[1][0] * values[0][3] - values[1][1] * values[1][3] - values[1][2] * values[2][3]; // return *this;
T b2 = - values[2][0] * values[0][3] - values[2][1] * values[1][3] - values[2][2] * values[2][3]; //}
values[0][3] = b0;
values[1][3] = b1;
values[2][3] = b2;
return *this;
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
T T
matrix<S,T>::det (void) const { util::matrix<S,T>::determinant (void) const
return values[0][3] * values[1][2] * values[2][1] * values[3][0] - {
values[0][2] * values[1][3] * values[2][1] * values[3][0] - return util::determinant (*this);
values[0][3] * values[1][1] * values[2][2] * values[3][0] + }
values[0][1] * values[1][3] * values[2][2] * values[3][0] +
values[0][2] * values[1][1] * values[2][3] * values[3][0] -
values[0][1] * values[1][2] * values[2][3] * values[3][0] -
values[0][3] * values[1][2] * values[2][0] * values[3][1] +
values[0][2] * values[1][3] * values[2][0] * values[3][1] +
values[0][3] * values[1][0] * values[2][2] * values[3][1] -
values[0][0] * values[1][3] * values[2][2] * values[3][1] -
values[0][2] * values[1][0] * values[2][3] * values[3][1] +
values[0][0] * values[1][2] * values[2][3] * values[3][1] +
values[0][3] * values[1][1] * values[2][0] * values[3][2] - //-----------------------------------------------------------------------------
values[0][1] * values[1][3] * values[2][0] * values[3][2] - template <size_t S, typename T>
values[0][3] * values[1][0] * values[2][1] * values[3][2] + util::matrix<S,T>
values[0][0] * values[1][3] * values[2][1] * values[3][2] + util::matrix<S,T>::inverse (void) const
values[0][1] * values[1][0] * values[2][3] * values[3][2] - {
values[0][0] * values[1][1] * values[2][3] * values[3][2] - return util::inverse (*this);
values[0][2] * values[1][1] * values[2][0] * values[3][3] +
values[0][1] * values[1][2] * values[2][0] * values[3][3] +
values[0][2] * values[1][0] * values[2][1] * values[3][3] -
values[0][0] * values[1][2] * values[2][1] * values[3][3] -
values[0][1] * values[1][0] * values[2][2] * values[3][3] +
values[0][0] * values[1][1] * values[2][2] * values[3][3];
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T> matrix<S,T>
matrix<S,T>::operator* (const matrix<S,T> &rhs) const { matrix<S,T>::operator* (const matrix<S,T> &rhs) const
{
matrix<S,T> m; matrix<S,T> m;
for (unsigned row = 0; row < S; ++row) { for (unsigned row = 0; row < S; ++row) {
@ -248,41 +152,23 @@ matrix<S,T>::operator* (const matrix<S,T> &rhs) const {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T>& matrix<S,T>&
matrix<S,T>::operator*=(const matrix<S,T> &rhs) { matrix<S,T>::operator*=(const matrix<S,T> &rhs)
{
return *this = *this * rhs; return *this = *this * rhs;
} }
/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////
//template <size_t S, typename T>
//vector<3,T>
//matrix<S,T>::operator* (vector<3,T> v) const
//{
// return (
// *this * v.template homog<S> ()
// ).template redim<3> ();
//}
//
//
////-----------------------------------------------------------------------------
//template <size_t S, typename T>
//point<3,T>
//matrix<S,T>::operator* (point<3,T> p) const
//{
// return (*this * p.template homog<S> ()).template redim<3> ();
//}
//-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
vector<S,T> vector<S,T>
matrix<S,T>::operator* (const vector<S,T> &rhs) const { matrix<S,T>::operator* (const vector<S,T> &rhs) const
return vector<S,T> { {
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w, vector<S,T> out;
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w,
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w, for (size_t i = 0; i < S; ++i)
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w out[i] = dot (rhs, values[i]);
};
return out;
} }
@ -291,12 +177,12 @@ template <size_t S, typename T>
point<S,T> point<S,T>
matrix<S,T>::operator* (const point<S,T> &rhs) const matrix<S,T>::operator* (const point<S,T> &rhs) const
{ {
return point<S,T> { point<S,T> out;
values[0][0] * rhs.x + values[0][1] * rhs.y + values[0][2] * rhs.z + values[0][3] * rhs.w,
values[1][0] * rhs.x + values[1][1] * rhs.y + values[1][2] * rhs.z + values[1][3] * rhs.w, for (size_t i = 0; i < S; ++i)
values[2][0] * rhs.x + values[2][1] * rhs.y + values[2][2] * rhs.z + values[2][3] * rhs.w, out[i] = dot (rhs, values[i]);
values[3][0] * rhs.x + values[3][1] * rhs.y + values[3][2] * rhs.z + values[3][3] * rhs.w
}; return out;
} }
@ -318,7 +204,8 @@ matrix<S,T>::operator* (T f) const
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T>& matrix<S,T>&
matrix<S,T>::operator*= (T f){ matrix<S,T>::operator*= (T f)
{
for (size_t i = 0; i < S; ++i) for (size_t i = 0; i < S; ++i)
for (size_t j = 0; j < S; ++j) for (size_t j = 0; j < S; ++j)
values[i][j] *= f; values[i][j] *= f;
@ -329,22 +216,24 @@ matrix<S,T>::operator*= (T f){
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T> util::matrix<S,T>
matrix<S,T>::operator/ (T s) const { util::matrix<S,T>::operator/ (T t) const
matrix<S,T> m; {
auto out = *this;
for (size_t r = 0; r < m.rows; ++r) for (auto &i: out.values)
for (size_t c = 0; c < m.cols; ++c) for (auto &j: i)
m.values[r][c] = values[r][c] / s; j /= t;
return m; return out;
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
matrix<S,T>& matrix<S,T>&
matrix<S,T>::operator/= (T s) { matrix<S,T>::operator/= (T s)
{
for (size_t r = 0; r < rows; ++r) for (size_t r = 0; r < rows; ++r)
for (size_t c = 0; c < cols; ++c) for (size_t c = 0; c < cols; ++c)
values[r][c] /= s; values[r][c] /= s;
@ -356,7 +245,8 @@ matrix<S,T>::operator/= (T s) {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
bool bool
matrix<S,T>::operator== (const matrix<S,T> &rhs) const { matrix<S,T>::operator== (const matrix<S,T> &rhs) const
{
for (size_t r = 0; r < rows; ++r) for (size_t r = 0; r < rows; ++r)
for (size_t c = 0; c < cols; ++c) for (size_t c = 0; c < cols; ++c)
if (!almost_equal (rhs.values[r][c], values[r][c])) if (!almost_equal (rhs.values[r][c], values[r][c]))
@ -368,11 +258,13 @@ matrix<S,T>::operator== (const matrix<S,T> &rhs) const {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
bool bool
matrix<S,T>::is_affine (void) const { matrix<S,T>::is_affine (void) const
return exactly_equal (values[3][0], T {0}) && {
exactly_equal (values[3][1], T {0}) && for (size_t i = 0; i < S - 1; ++i)
exactly_equal (values[3][2], T {0}) && if (!exactly_zero (values[S-1][i]))
exactly_equal (values[3][3], T {1}); return false;
return exactly_equal (values[S-1][S-1], T{1});
} }
@ -538,31 +430,28 @@ matrix<S,T>::rotate (T angle, util::vector<3,T> about)
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
template <size_t S, typename T> template <size_t S, typename T>
const matrix<S,T> const matrix<S,T>
matrix<S,T>::IDENTITY = { { { 1, 0, 0, 0 }, matrix<S,T>::ZEROES { 0 };
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 } } };
template <size_t S, typename T>
const matrix<S,T>
matrix<S,T>::ZEROES = { { { 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 } } };
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
namespace util { namespace util {
template struct matrix<2,float>;
template struct matrix<2,double>;
template struct matrix<3,float>;
template struct matrix<3,double>;
template struct matrix<4,float>; template struct matrix<4,float>;
template struct matrix<4,double>; template struct matrix<4,double>;
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
namespace util { namespace util {
template <size_t S, typename T> template <size_t S, typename T>
std::ostream& std::ostream&
operator<< (std::ostream &os, const matrix<S,T> &m) { operator<< (std::ostream &os, const matrix<S,T> &m)
{
os << "{ {" << m.values[0][0] << ", " os << "{ {" << m.values[0][0] << ", "
<< m.values[0][1] << ", " << m.values[0][1] << ", "
<< m.values[0][2] << ", " << m.values[0][2] << ", "
@ -584,5 +473,6 @@ namespace util {
} }
} }
template std::ostream& util::operator<< (std::ostream&, const matrix<4,float>&); template std::ostream& util::operator<< (std::ostream&, const matrix<4,float>&);
template std::ostream& util::operator<< (std::ostream&, const matrix<4,double>&); template std::ostream& util::operator<< (std::ostream&, const matrix<4,double>&);

View File

@ -29,9 +29,14 @@ namespace util {
static const size_t rows = S; static const size_t rows = S;
static const size_t cols = S; static const size_t cols = S;
T* operator[] (size_t);
const T* operator[] (size_t) const;
matrix& transpose (void); matrix& transpose (void);
matrix transposed (void) const; matrix transposed (void) const;
T determinant (void) const;
matrix inverse (void) const; matrix inverse (void) const;
matrix& invert (void); matrix& invert (void);
matrix inverse_affine (void) const; matrix inverse_affine (void) const;
@ -42,9 +47,6 @@ namespace util {
matrix operator* (const matrix&) const; matrix operator* (const matrix&) const;
matrix& operator*=(const matrix&); matrix& operator*=(const matrix&);
//vector<3,T> operator* (vector<3,T>) const;
//point<3,T> operator* (point<3,T>) const;
vector<S,T> operator* (const vector<S,T>&) const; vector<S,T> operator* (const vector<S,T>&) const;
point<S,T> operator* (const point<S,T> &) const; point<S,T> operator* (const point<S,T> &) const;
@ -78,12 +80,26 @@ namespace util {
static const matrix ZEROES; static const matrix ZEROES;
}; };
template <size_t S, typename T>
T determinant (const matrix<S,T>&);
template <size_t S, typename T>
matrix<S,T>
inverse (const matrix<S,T>&);
template <typename T> using matrix3 = matrix<3,T>; template <typename T> using matrix3 = matrix<3,T>;
template <typename T> using matrix4 = matrix<4,T>; template <typename T> using matrix4 = matrix<4,T>;
template <size_t S> using matrixf = matrix<S,float>; template <size_t S> using matrixf = matrix<S,float>;
template <size_t S> using matrixd = matrix<S,double>; template <size_t S> using matrixd = matrix<S,double>;
typedef matrix<2,float> matrix2f;
typedef matrix<2,double> matrix2d;
typedef matrix<3,float> matrix3f;
typedef matrix<3,double> matrix3d;
typedef matrix<4,float> matrix4f; typedef matrix<4,float> matrix4f;
typedef matrix<4,double> matrix4d; typedef matrix<4,double> matrix4d;

View File

@ -21,6 +21,46 @@
#define __UTIL_MATRIX_IPP #define __UTIL_MATRIX_IPP
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T>
T*
util::matrix<S,T>::operator[] (size_t idx)
{
return this->values[idx];
}
//-----------------------------------------------------------------------------
template <size_t S, typename T>
const T*
util::matrix<S,T>::operator[] (size_t idx) const
{
return this->values[idx];
}
///////////////////////////////////////////////////////////////////////////////
//template <size_t S, typename T>
//vector<3,T>
//matrix<S,T>::operator* (vector<3,T> v) const
//{
// return (
// *this * v.template homog<S> ()
// ).template redim<3> ();
//}
//
//
////-----------------------------------------------------------------------------
//template <size_t S, typename T>
//point<3,T>
//matrix<S,T>::operator* (point<3,T> p) const
//{
// return (*this * p.template homog<S> ()).template redim<3> ();
//}
//
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T> template <size_t S, typename T>
template <typename U> template <typename U>
util::matrix<S,U> util::matrix<S,U>
@ -34,3 +74,49 @@ util::matrix<S,T>::cast (void) const
return out; return out;
} }
/////////////////////////////////////////////////////////////////////////////////
//template <size_t S, typename T>
//T
//util::matrix<S,T>::determinant (void) const
//{
// return util::determinant (*this);
//}
//
//
////-----------------------------------------------------------------------------
//template <size_t S, typename T>
//util::matrix<S,T>
//util::matrix<S,T>::inverse (void) const
//{
// return util::inverse (*this);
//}
///////////////////////////////////////////////////////////////////////////////
//template <size_t S, typename T>
//util::matrix<S,T>
//util::matrix<S,T>::operator/ (T t) const
//{
// auto out = *this;
//
// for (auto &i: out.values)
// for (auto &j: i)
// j /= t;
//
// return out;
//}
//
//
/////////////////////////////////////////////////////////////////////////////////
//template <size_t S, typename T>
//bool
//util::matrix<S,T>::operator== (const matrix<S,T> &m) const
//{
// for (size_t i = 0; i < S; ++i)
// for (size_t j = 0; j < S; ++j)
// if (!exactly_equal (values[i][j], m[i][j]))
// return false;
// return true;
//}

64
matrix2.cpp Normal file
View File

@ -0,0 +1,64 @@
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
*/
#include "matrix.hpp"
using util::matrix;
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T>
T
util::determinant (const matrix<S,T> &m)
{
static_assert (S == 2, "partial specialization for 2 dimensions");
return m[0][0] * m[1][1] - m[0][1] * m[1][0];
}
template float util::determinant (const matrix<2,float>&);
template double util::determinant (const matrix<2,double>&);
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
util::inverse (const matrix<S,T> &m)
{
static_assert (S == 2, "partial specialization for 2 dimensions");
return matrix<S,T> {
m[1][1], -m[0][1],
-m[1][0], m[0][0]
} / determinant (m);
}
template util::matrix<2,float> util::inverse (const matrix<2,float>&);
template util::matrix<2,double> util::inverse (const matrix<2,double>&);
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T>
const matrix<S,T>
matrix<S,T>::IDENTITY = { {
{ 1, 0, },
{ 0, 1 }
} };
///////////////////////////////////////////////////////////////////////////////
template struct util::matrix<2,float>;
template struct util::matrix<2,double>;

75
matrix3.cpp Normal file
View File

@ -0,0 +1,75 @@
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
*/
#include "./matrix.hpp"
using util::matrix;
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T>
T
util::determinant (const matrix<S,T>& m)
{
static_assert (S == 3, "hard coded 3x3 specialisation");
return m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]) -
m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]) +
m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
}
template float util::determinant (const matrix<3,float>&);
template double util::determinant (const matrix<3,double>&);
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
util::inverse (const matrix<S,T> &m)
{
static_assert (S == 3, "hard coded 3x3 specialisation");
return matrix<S,T> {
m[1][1] * m[2][2] - m[2][1] * m[1][2],
m[0][2] * m[2][1] - m[0][1] * m[2][2],
m[0][1] * m[1][2] - m[0][2] * m[1][1],
m[1][2] * m[2][0] - m[1][0] * m[2][2],
m[0][0] * m[2][2] - m[0][2] * m[2][0],
m[1][0] * m[0][2] - m[0][0] * m[1][2],
m[1][0] * m[2][1] - m[2][0] * m[1][1],
m[2][0] * m[0][1] - m[0][0] * m[2][1],
m[0][0] * m[1][1] - m[1][0] * m[0][1],
} / determinant (m);
}
template util::matrix<3,float> util::inverse (const matrix<3,float>&);
template util::matrix<3,double> util::inverse (const matrix<3,double>&);
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T>
const matrix<S,T>
matrix<S,T>::IDENTITY = { {
{ 1, 0, 0, },
{ 0, 1, 0, },
{ 0, 0, 1 }
} };
///////////////////////////////////////////////////////////////////////////////
template struct util::matrix<3,float>;
template struct util::matrix<3,double>;

89
matrix4.cpp Normal file
View File

@ -0,0 +1,89 @@
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
*/
#include "matrix.hpp"
using util::matrix;
//-----------------------------------------------------------------------------
template <size_t S, typename T>
T
util::determinant (const matrix<S,T> &m)
{
static_assert (S == 4, "hard coded 4x4 specialisation");
return m[0][3] * m[1][2] * m[2][1] * m[3][0] - m[0][2] * m[1][3] * m[2][1] * m[3][0] -
m[0][3] * m[1][1] * m[2][2] * m[3][0] + m[0][1] * m[1][3] * m[2][2] * m[3][0] +
m[0][2] * m[1][1] * m[2][3] * m[3][0] - m[0][1] * m[1][2] * m[2][3] * m[3][0] -
m[0][3] * m[1][2] * m[2][0] * m[3][1] + m[0][2] * m[1][3] * m[2][0] * m[3][1] +
m[0][3] * m[1][0] * m[2][2] * m[3][1] - m[0][0] * m[1][3] * m[2][2] * m[3][1] -
m[0][2] * m[1][0] * m[2][3] * m[3][1] + m[0][0] * m[1][2] * m[2][3] * m[3][1] +
m[0][3] * m[1][1] * m[2][0] * m[3][2] - m[0][1] * m[1][3] * m[2][0] * m[3][2] -
m[0][3] * m[1][0] * m[2][1] * m[3][2] + m[0][0] * m[1][3] * m[2][1] * m[3][2] +
m[0][1] * m[1][0] * m[2][3] * m[3][2] - m[0][0] * m[1][1] * m[2][3] * m[3][2] -
m[0][2] * m[1][1] * m[2][0] * m[3][3] + m[0][1] * m[1][2] * m[2][0] * m[3][3] +
m[0][2] * m[1][0] * m[2][1] * m[3][3] - m[0][0] * m[1][2] * m[2][1] * m[3][3] -
m[0][1] * m[1][0] * m[2][2] * m[3][3] + m[0][0] * m[1][1] * m[2][2] * m[3][3];
}
template float util::determinant (const matrix<4,float>&);
template double util::determinant (const matrix<4,double>&);
//-----------------------------------------------------------------------------
template <size_t S, typename T>
matrix<S,T>
util::inverse (const matrix<S,T> &m)
{
static_assert (S == 4, "hard coded 4x4 specialisation");
return matrix<S,T> {
m[1][2]*m[2][3]*m[3][1] - m[1][3]*m[2][2]*m[3][1] + m[1][3]*m[2][1]*m[3][2] - m[1][1]*m[2][3]*m[3][2] - m[1][2]*m[2][1]*m[3][3] + m[1][1]*m[2][2]*m[3][3],
m[0][3]*m[2][2]*m[3][1] - m[0][2]*m[2][3]*m[3][1] - m[0][3]*m[2][1]*m[3][2] + m[0][1]*m[2][3]*m[3][2] + m[0][2]*m[2][1]*m[3][3] - m[0][1]*m[2][2]*m[3][3],
m[0][2]*m[1][3]*m[3][1] - m[0][3]*m[1][2]*m[3][1] + m[0][3]*m[1][1]*m[3][2] - m[0][1]*m[1][3]*m[3][2] - m[0][2]*m[1][1]*m[3][3] + m[0][1]*m[1][2]*m[3][3],
m[0][3]*m[1][2]*m[2][1] - m[0][2]*m[1][3]*m[2][1] - m[0][3]*m[1][1]*m[2][2] + m[0][1]*m[1][3]*m[2][2] + m[0][2]*m[1][1]*m[2][3] - m[0][1]*m[1][2]*m[2][3],
m[1][3]*m[2][2]*m[3][0] - m[1][2]*m[2][3]*m[3][0] - m[1][3]*m[2][0]*m[3][2] + m[1][0]*m[2][3]*m[3][2] + m[1][2]*m[2][0]*m[3][3] - m[1][0]*m[2][2]*m[3][3],
m[0][2]*m[2][3]*m[3][0] - m[0][3]*m[2][2]*m[3][0] + m[0][3]*m[2][0]*m[3][2] - m[0][0]*m[2][3]*m[3][2] - m[0][2]*m[2][0]*m[3][3] + m[0][0]*m[2][2]*m[3][3],
m[0][3]*m[1][2]*m[3][0] - m[0][2]*m[1][3]*m[3][0] - m[0][3]*m[1][0]*m[3][2] + m[0][0]*m[1][3]*m[3][2] + m[0][2]*m[1][0]*m[3][3] - m[0][0]*m[1][2]*m[3][3],
m[0][2]*m[1][3]*m[2][0] - m[0][3]*m[1][2]*m[2][0] + m[0][3]*m[1][0]*m[2][2] - m[0][0]*m[1][3]*m[2][2] - m[0][2]*m[1][0]*m[2][3] + m[0][0]*m[1][2]*m[2][3],
m[1][1]*m[2][3]*m[3][0] - m[1][3]*m[2][1]*m[3][0] + m[1][3]*m[2][0]*m[3][1] - m[1][0]*m[2][3]*m[3][1] - m[1][1]*m[2][0]*m[3][3] + m[1][0]*m[2][1]*m[3][3],
m[0][3]*m[2][1]*m[3][0] - m[0][1]*m[2][3]*m[3][0] - m[0][3]*m[2][0]*m[3][1] + m[0][0]*m[2][3]*m[3][1] + m[0][1]*m[2][0]*m[3][3] - m[0][0]*m[2][1]*m[3][3],
m[0][1]*m[1][3]*m[3][0] - m[0][3]*m[1][1]*m[3][0] + m[0][3]*m[1][0]*m[3][1] - m[0][0]*m[1][3]*m[3][1] - m[0][1]*m[1][0]*m[3][3] + m[0][0]*m[1][1]*m[3][3],
m[0][3]*m[1][1]*m[2][0] - m[0][1]*m[1][3]*m[2][0] - m[0][3]*m[1][0]*m[2][1] + m[0][0]*m[1][3]*m[2][1] + m[0][1]*m[1][0]*m[2][3] - m[0][0]*m[1][1]*m[2][3],
m[1][2]*m[2][1]*m[3][0] - m[1][1]*m[2][2]*m[3][0] - m[1][2]*m[2][0]*m[3][1] + m[1][0]*m[2][2]*m[3][1] + m[1][1]*m[2][0]*m[3][2] - m[1][0]*m[2][1]*m[3][2],
m[0][1]*m[2][2]*m[3][0] - m[0][2]*m[2][1]*m[3][0] + m[0][2]*m[2][0]*m[3][1] - m[0][0]*m[2][2]*m[3][1] - m[0][1]*m[2][0]*m[3][2] + m[0][0]*m[2][1]*m[3][2],
m[0][2]*m[1][1]*m[3][0] - m[0][1]*m[1][2]*m[3][0] - m[0][2]*m[1][0]*m[3][1] + m[0][0]*m[1][2]*m[3][1] + m[0][1]*m[1][0]*m[3][2] - m[0][0]*m[1][1]*m[3][2],
m[0][1]*m[1][2]*m[2][0] - m[0][2]*m[1][1]*m[2][0] + m[0][2]*m[1][0]*m[2][1] - m[0][0]*m[1][2]*m[2][1] - m[0][1]*m[1][0]*m[2][2] + m[0][0]*m[1][1]*m[2][2],
} / determinant (m);
}
template util::matrix<4,float> util::inverse (const matrix<4,float>&);
template util::matrix<4,double> util::inverse (const matrix<4,double>&);
///////////////////////////////////////////////////////////////////////////////
template <size_t S, typename T>
const matrix<S,T>
matrix<S,T>::IDENTITY = { { { 1, 0, 0, 0 },
{ 0, 1, 0, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, 0, 1 } } };
///////////////////////////////////////////////////////////////////////////////
template struct util::matrix<4,float>;
template struct util::matrix<4,double>;

View File

@ -86,8 +86,44 @@ main (void)
tap.expect (success, "identity inversion"); tap.expect (success, "identity inversion");
} }
// Simple 2x2 inversion test
{
util::matrix2f m { {
{ 1, 2 },
{ 3, 4 }
} };
tap.expect_eq (-2, m.determinant (), "2x2 determinant");
util::matrix2f r { {
{ -4, 2 },
{ 3, -1 }
} };
tap.expect_eq (r / 2.f, m.inverse (), "2x2 inversion");
}
// Simple 3x3 inversion test
{
util::matrix3f m { {
{ 3, 1, 2 },
{ 2, 3, 1 },
{ 4, 0, 2 }
} };
tap.expect_eq (-6, m.determinant (), "3x3 determinant");
util::matrix3f r { {
{ -6, 2, 5 },
{ 0, 2, -1 },
{ 12, -4, -7 }
} };
tap.expect_eq (m.inverse (), r / 6.f, "3x3 inversion");
}
// Simple 4x4 inversion test
{ {
// Simple inversion test
util::matrix4f m { { util::matrix4f m { {
{ 4, 1, 2, 3 }, { 4, 1, 2, 3 },
{ 2, 3, 4, 1 }, { 2, 3, 4, 1 },
@ -95,6 +131,8 @@ main (void)
{ 1, 2, 3, 4 } { 1, 2, 3, 4 }
} }; } };
tap.expect_eq (-160.f, m.determinant (), "4x4 determinant");
util::matrix4f r { { util::matrix4f r { {
{ 11, 1, 1, -9 }, { 11, 1, 1, -9 },
{ -9, 1, 11, 1 }, { -9, 1, 11, 1 },
@ -102,7 +140,7 @@ main (void)
{ 1, -9, 1, 11 } { 1, -9, 1, 11 }
} }; } };
tap.expect_eq (m.inverse (), r / 40.f, "simple inversion"); tap.expect_eq (m.inverse (), r / 40.f, "4x4 inversion");
} }
return tap.status (); return tap.status ();