maths: use true constexpr values for pi

This commit is contained in:
Danny Robson 2018-03-12 23:06:15 +11:00
parent d1c6df8bf1
commit 5bc2cf12d4
8 changed files with 32 additions and 29 deletions

View File

@ -46,7 +46,7 @@ namespace util::geom {
{
std::uniform_real_distribution<T> dist;
float phi = dist (g) * 2 * PI<T>;
float phi = dist (g) * 2 * pi<T>;
float rho = std::sqrt (dist (g));
return util::point<2,T> {

View File

@ -31,11 +31,6 @@ template uint32_t util::log2up (uint32_t);
template uint64_t util::log2up (uint64_t);
///////////////////////////////////////////////////////////////////////////////
template const float util::PI<float>;
template const double util::PI<double>;
///////////////////////////////////////////////////////////////////////////////
// Simple instantiations. Some functions aren't used internally to the library
// so it's easier to instantiate early and check for broken code at library

View File

@ -451,13 +451,21 @@ namespace util {
///////////////////////////////////////////////////////////////////////////////
// angles, trig
namespace detail {
template <typename T>
constexpr T PI = T(3.141592653589793238462643);
struct pi;
template <> struct pi<float> { static constexpr float value = 3.141592653589793238462643f; };
template <> struct pi<double> { static constexpr double value = 3.141592653589793238462643; };
};
template <typename T>
constexpr auto pi = detail::pi<T>::value;
//-----------------------------------------------------------------------------
template <typename T>
constexpr T E = T(2.71828182845904523536028747135266250);
constexpr T E = static_cast<T> (2.71828182845904523536028747135266250);
//-----------------------------------------------------------------------------
@ -466,7 +474,7 @@ namespace util {
to_degrees (T radians)
{
static_assert (std::is_floating_point<T>::value, "undefined for integral types");
return radians * 180 / PI<T>;
return radians * 180 / pi<T>;
}
@ -476,7 +484,7 @@ namespace util {
to_radians (T degrees)
{
static_assert (std::is_floating_point<T>::value, "undefined for integral types");
return degrees / 180 * PI<T>;
return degrees / 180 * pi<T>;
}
@ -486,7 +494,7 @@ namespace util {
constexpr T
sincn (T x)
{
return almost_zero (x) ? 1 : std::sin (PI<T> * x) / (PI<T> * x);
return almost_zero (x) ? 1 : std::sin (pi<T> * x) / (pi<T> * x);
}
@ -518,7 +526,7 @@ namespace util {
using real_t = double;
return static_cast<uintmax_t> (
std::sqrt (2 * PI<real_t> * n) * std::pow (n / E<real_t>, n)
std::sqrt (2 * pi<real_t> * n) * std::pow (n / E<real_t>, n)
);
}

View File

@ -118,8 +118,8 @@ namespace util::polynomial {
const float t = 2 * std::sqrt (-p);
s[0] = t * std::cos (phi);
s[1] = -t * std::cos (phi + PI<float> / 3.f);
s[2] = -t * std::cos (phi - PI<float> / 3.f);
s[1] = -t * std::cos (phi + pi<float> / 3.f);
s[2] = -t * std::cos (phi - pi<float> / 3.f);
} else {
float u = std::cbrt (std::sqrt (D) + abs (q));
if (q > 0.f)

View File

@ -180,10 +180,10 @@ main (void)
tap.expect_eq (util::sign ( numeric_limits<double>::infinity ()), 1., "sign +inf");
tap.expect_eq (util::sign (-numeric_limits<double>::infinity ()), -1., "sign -inf");
tap.expect_eq (util::to_degrees (util::PI< float>), 180.f, "to_degrees float");
tap.expect_eq (util::to_degrees (util::PI<double>), 180.0, "to_degrees double");
tap.expect_eq (util::to_radians (180.f), util::PI<float>, "to_radians float");
tap.expect_eq (util::to_radians (180.0), util::PI<double>, "to_radians double");
tap.expect_eq (util::to_degrees (util::pi< float>), 180.f, "to_degrees float");
tap.expect_eq (util::to_degrees (util::pi<double>), 180.0, "to_degrees double");
tap.expect_eq (util::to_radians (180.f), util::pi<float>, "to_radians float");
tap.expect_eq (util::to_radians (180.0), util::pi<double>, "to_radians double");
tap.expect_eq (util::log2 (8u), 3u, "log2 +ve");
tap.expect_eq (util::log2 (1u), 0u, "log2 zero");

View File

@ -196,7 +196,7 @@ main (void)
};
for (auto t: TESTS) {
constexpr auto PI2 = 2 * util::PI<float>;
constexpr auto PI2 = 2 * util::pi<float>;
auto matrix = (
util::quaternionf::angle_axis (t.euler[2], { 0, 0, 1 }) *

View File

@ -32,13 +32,13 @@ test_polar (util::TAP::logger &tap)
},
{
{ 1.f, util::PI<float> / 2.f },
{ 1.f, util::pi<float> / 2.f },
{ 0.f, 1.f },
"unit length, rotated"
},
{
{ 1.f, 2 * util::PI<float> },
{ 1.f, 2 * util::pi<float> },
{ 1.f, 0.f },
"full rotation, unit length"
}
@ -57,8 +57,8 @@ test_polar (util::TAP::logger &tap)
auto in_polar = t.polar;
auto to_polar = util::cartesian_to_polar (t.cartesian);
in_polar[1] = std::fmod (in_polar[1], 2 * util::PI<float>);
to_polar[1] = std::fmod (to_polar[1], 2 * util::PI<float>);
in_polar[1] = std::fmod (in_polar[1], 2 * util::pi<float>);
to_polar[1] = std::fmod (to_polar[1], 2 * util::pi<float>);
tap.expect_eq (in_polar, to_polar, "%s", t.desc);
}
@ -88,7 +88,7 @@ test_euler (util::TAP::logger &tap)
// check that simple axis rotations look correct
for (auto i: TESTS) {
tap.expect_eq (util::to_euler (i.dir),
i.euler * util::PI<float>,
i.euler * util::pi<float>,
"to euler, %s", i.name);
}
@ -109,7 +109,7 @@ test_euler (util::TAP::logger &tap)
void
test_spherical (util::TAP::logger &tap)
{
constexpr auto q = util::PI<float> / 2.f;
constexpr auto q = util::pi<float> / 2.f;
static constexpr struct {
util::vector3f spherical;

View File

@ -105,16 +105,16 @@ namespace util {
{
if (s.x < 0) {
s.x = -s.x;
s.y += util::PI<T>;
s.y += util::pi<T>;
}
if (s.y < 0) {
s.y = -s.y;
s.z += util::PI<T>;
s.z += util::pi<T>;
}
s.y = std::fmod (s.y, util::PI<T>);
s.z = std::fmod (s.z, util::PI<T>);
s.y = std::fmod (s.y, util::pi<T>);
s.z = std::fmod (s.z, util::pi<T>);
return s;
}