n/b/patch: add blur width parameter

This commit is contained in:
Danny Robson 2015-07-28 18:14:10 +10:00
parent 8e92bd977b
commit 48d6a007a2
3 changed files with 173 additions and 92 deletions

View File

@ -17,12 +17,13 @@
#ifndef __UTIL_NOISE_BASIS_PATCH_HPP
#define __UTIL_NOISE_BASIS_PATCH_HPP
#include "../basis.hpp"
#include "../../point.hpp"
namespace util { namespace noise { namespace basis {
template <typename T>
struct patch {
patch (seed_t);
patch (seed_t, T width = 0);
range<T> bounds (void) const;
T operator() (point2<T>) const;
@ -30,10 +31,17 @@ namespace util { namespace noise { namespace basis {
seed_t seed (void) const;
seed_t seed (seed_t);
T width (void) const;
T width (T);
private:
point2<T> centroid (util::point2i) const;
T generate (util::point2i) const;
static constexpr T THRESHOLD = 1 - T(0.999);
T m_width;
T m_power;
seed_t m_seed;
};
} } }

View File

@ -19,99 +19,169 @@
#endif
#define __UTIL_NOISE_BASIS_PATCH_IPP
///////////////////////////////////////////////////////////////////////////////
template <typename T>
util::noise::basis::patch<T>::patch (seed_t _seed):
m_seed (_seed)
{ ; }
#include "../../types.hpp"
#include "../../ray.hpp"
#include "../../vector.hpp"
///////////////////////////////////////////////////////////////////////////////
template <typename T>
util::range<T>
util::noise::basis::patch<T>::bounds (void) const
{
return { T{0}, T{1} };
}
namespace util { namespace noise { namespace basis {
///////////////////////////////////////////////////////////////////////////
template <typename T>
patch<T>::patch (seed_t _seed, T _width):
m_width (_width),
m_power (exactly_zero (_width)
? std::numeric_limits<T>::infinity ()
: std::log (THRESHOLD) / std::log (1 - _width)),
m_seed (_seed)
{ ; }
///////////////////////////////////////////////////////////////////////////////
template <typename T>
T
util::noise::basis::patch<T>::operator () (point2<T> p) const
{
// extract integer and fractional parts. be careful to always round down
// (particularly with negatives) and avoid rounding errors.
auto p_int = p.template cast<intmax_t> ();
if (p.x < 0) p_int.x -= 1;
if (p.y < 0) p_int.y -= 1;
auto p_rem = (p - p_int).template as<point> ();
///////////////////////////////////////////////////////////////////////////
template <typename T>
range<T>
patch<T>::bounds (void) const
{
return { T{0}, T{1} };
}
T closest = std::numeric_limits<T>::infinity ();
T value;
for (signed y = -1; y <= 1; ++y)
for (signed x = -1; x <= 1; ++x) {
util::vector2i offset {x, y};
auto c = centroid (p_int + offset);
auto d = util::distance (p_rem, c + offset);
///////////////////////////////////////////////////////////////////////////
template <typename T>
T
patch<T>::operator () (point2<T> p) const
{
// extract integer and fractional parts. be careful to always round down
// (particularly with negatives) and avoid rounding errors.
auto p_int = p.template cast<intmax_t> ();
if (p.x < 0) p_int.x -= 1;
if (p.y < 0) p_int.y -= 1;
auto p_rem = (p - p_int).template as<point> ();
if (d < closest) {
closest = d;
value = generate (p_int + offset);
}
static const util::vector2i OFFSETS[] = {
{ 0, -2 },
{ -1, -1 }, { 0, -1 }, { 1, -1 },
{ -2, 0 }, { -1, 0 }, { 0, 0 }, { 1, 0 }, { 2, 0 },
{ -1, 1 }, { 0, 1 }, { 1, 1 },
{ 0, 2 },
};
static const size_t COUNT = elems (OFFSETS);
// find the distances to each neighbour's centroid
util::point2<T> centres[COUNT];
for (size_t i = 0; i < COUNT; ++i)
centres[i] = centroid (p_int + OFFSETS[i]) + OFFSETS[i];
T distances[COUNT];
for (size_t i = 0; i < COUNT; ++i)
distances[i] = util::distance (p_rem, centres[i]);
// sort the distances, using indices so we can use 'offsets' to generate values
unsigned indices[COUNT];
std::iota (std::begin (indices), std::end (indices), 0);
std::sort (std::begin (indices),
std::end (indices),
[&] (auto a, auto b) {
return distances[a] < distances[b];
});
// calculate normalisation constants for the 9 nearest points. the
// neighbourhood size is implicitly specified by the 1.5 unit maximum
// distance.
constexpr auto MAX_DISTANCE = std::hypot (1.5f, 1.5f);
const auto lo = distances[indices[0]];
const auto hi = std::min (distances[indices[COUNT-1]], MAX_DISTANCE);
T out = 0.f;
T sumw = 0.f;
// sum the weight values of each neighbour. weight by a function of
// the distance. we use an power function which allows a known width
// to blend.
for (size_t i = 0; i < COUNT && distances[indices[i]] <= MAX_DISTANCE; ++i)
{
auto v = generate (p_int + OFFSETS[indices[i]]);
auto d = (distances[indices[i]] - lo) / (hi - lo);
auto w = std::pow (1 - d, m_power);
sumw += w;
out += v * w;
}
return value;
}
return out / sumw;
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
util::noise::seed_t
util::noise::basis::patch<T>::seed (void) const
{
return m_seed;
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
seed_t
patch<T>::seed (void) const
{
return m_seed;
}
//-----------------------------------------------------------------------------
template <typename T>
util::noise::seed_t
util::noise::basis::patch<T>::seed (util::noise::seed_t _seed)
{
return m_seed = _seed;
}
//-------------------------------------------------------------------------
template <typename T>
seed_t
patch<T>::seed (util::noise::seed_t _seed)
{
return m_seed = _seed;
}
///////////////////////////////////////////////////////////////////////////////
template <typename T>
util::point2<T>
util::noise::basis::patch<T>::centroid (util::point2i p) const
{
using util::hash::murmur2::mix;
auto u = mix (m_seed, mix (uint64_t (p.x), uint64_t (p.y)));
auto v = mix (u, m_seed);
auto r = util::point<2,T> {
(u & 0xffff) / T{0xffff},
(v & 0xffff) / T{0xffff}
};
CHECK_LIMIT (r, T{0}, T{1});
return r;
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
T
patch<T>::width (void) const
{
return m_width;
}
//-----------------------------------------------------------------------------
template <typename T>
T
util::noise::basis::patch<T>::generate (util::point2i p) const
{
using util::hash::murmur2::mix;
//-------------------------------------------------------------------------
template <typename T>
T
patch<T>::width (T _width)
{
m_width = _width;
m_power = exactly_zero (_width)
? std::numeric_limits<T>::infinity ()
: std::log (THRESHOLD) / std::log (1 - _width);
auto u = mix (m_seed, mix (uint64_t (p.x), uint64_t (p.y)));
return (u & 0xffff) / T{0xffff};
}
return m_width;
}
///////////////////////////////////////////////////////////////////////////
template <typename T>
util::point2<T>
patch<T>::centroid (util::point2i p) const
{
using util::hash::murmur2::mix;
auto u = mix (m_seed, mix (uint64_t (p.x), uint64_t (p.y)));
auto v = mix (u, m_seed);
auto r = util::point<2,T> {
(u & 0xffff) / T{0xffff},
(v & 0xffff) / T{0xffff}
};
CHECK_LIMIT (r, T{0}, T{1});
return r;
}
//-------------------------------------------------------------------------
template <typename T>
T
patch<T>::generate (util::point2i p) const
{
using util::hash::murmur2::mix;
auto u = mix (m_seed, mix (uint64_t (p.x), uint64_t (p.y)));
return (u & 0xffff) / T{0xffff};
}
} } }

View File

@ -209,20 +209,22 @@ main (int argc, char **argv)
float scale = 1.f;
float turbulence = 0.f;
unsigned single = 0;
float width = 0;
// fill variables from arguments
util::cmdopt::parser args;
args.add<util::cmdopt::option::value<size_t>> ('w', "width", "output image width", res.w);
args.add<util::cmdopt::option::value<size_t>> ('h', "height", "output image height", res.h);
args.add<util::cmdopt::option::value<uint64_t>> ('s', "seed", "random seed", seed);
args.add<util::cmdopt::option::value<basis_t>> ('b', "basis", "primary basis function", basis);
args.add<util::cmdopt::option::value<fractal_t>> ('f', "fractal", "primary fractal function", fractal);
args.add<util::cmdopt::option::value<lerp_t>> ('l', "lerp", "interpolation algorithm", lerp);
args.add<util::cmdopt::option::value<unsigned>> ('o', "octaves", "total fractal iterations", octaves);
args.add<util::cmdopt::option::count<unsigned>> ('1', "single", "single octave", single);
args.add<util::cmdopt::option::value<float>> ('H', "hurst", "Hurst exponent", H);
args.add<util::cmdopt::option::value<float>> ('x', "scale", "frequency multiplier", scale);
args.add<util::cmdopt::option::value<float>> ('t', "turbulence","turbulence scale", turbulence);
args.add<util::cmdopt::option::value<size_t>> ('w', "width", "output image width", res.w);
args.add<util::cmdopt::option::value<size_t>> ('h', "height", "output image height", res.h);
args.add<util::cmdopt::option::value<uint64_t>> ('s', "seed", "random seed", seed);
args.add<util::cmdopt::option::value<basis_t>> ('b', "basis", "primary basis function", basis);
args.add<util::cmdopt::option::value<fractal_t>> ('f', "fractal", "primary fractal function", fractal);
args.add<util::cmdopt::option::value<lerp_t>> ('l', "lerp", "interpolation algorithm", lerp);
args.add<util::cmdopt::option::value<unsigned>> ('o', "octaves", "total fractal iterations", octaves);
args.add<util::cmdopt::option::count<unsigned>> ('1', "single", "single octave", single);
args.add<util::cmdopt::option::value<float>> ('H', "hurst", "Hurst exponent", H);
args.add<util::cmdopt::option::value<float>> ('x', "scale", "frequency multiplier", scale);
args.add<util::cmdopt::option::value<float>> ('t', "turbulence", "turbulence scale", turbulence);
args.add<util::cmdopt::option::value<float>> ('W', "patch-width", "patch blur width", width);
args.scan (argc, argv);
@ -293,7 +295,7 @@ main (int argc, char **argv)
}
case PATCH: {
b.reset<util::noise::basis::patch<float>> (seed);
b.reset<util::noise::basis::patch<float>> (seed, width);
break;
}
@ -343,6 +345,7 @@ main (int argc, char **argv)
auto offset = *range.first;
auto div = *range.second - *range.first;
std::cerr << '[' << *range.first << ',' << *range.second << "]\n";
std::transform (img.begin (), img.end (), img.begin (), [offset,div] (auto i) { return (i - offset) / div; });
// write the images to disk