coord/simd: add more sse operations

This commit is contained in:
Danny Robson 2018-03-20 13:30:05 +11:00
parent 7708b12c37
commit 341907ac79
3 changed files with 224 additions and 74 deletions

96
coord/simd_neon.hpp Normal file
View File

@ -0,0 +1,96 @@
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Copyright 2018 Danny Robson <danny@nerdcruft.net>
*/
#ifndef __ARM_NEON__
#error
#endif
#include "arm_neon.h"
namespace util::coord {
struct alignas (16) simd {
using value_type = float32x4_t;
///////////////////////////////////////////////////////////////////////
simd (float a, float b, float c, float d):
data (_mm_setr_ps (a, b, c, d))
{ ; }
//---------------------------------------------------------------------
simd (float v):
data (_mm_set_ps1 (v))
{ ; }
//---------------------------------------------------------------------
simd (value_type _data):
data (_data)
{ ; }
//---------------------------------------------------------------------
operator value_type& () { return data; }
operator const value_type& () const { return data; }
explicit operator bool () const;
float operator[] (int idx) const { return data[idx]; }
///////////////////////////////////////////////////////////////////////
value_type data;
};
///////////////////////////////////////////////////////////////////////////
simd operator* (simd a, simd b) { return vmulq_f32 (a, b); };
simd operator/ (simd a, simd b) { return vdivq_f32 (a, b); };
simd operator+ (simd a, simd b) { return vaddq_f32 (a, b); };
simd operator- (simd a, simd b) { return vsubq_f32 (a, b); };
simd operator< (simd a, simd b);
simd operator<= (simd a, simd b);
simd operator> (simd a, simd b);
simd operator>= (simd a, simd b);
simd operator== (simd a, simd b);
simd select (simd mask, simd a, simd b);
auto sum (simd val)
{
// reverse and add to self giving: 0123 + 3210
auto revq = vrev64q_f32 (val);
auto pair = vaddq_f32 (val, revq);
// reverse the upper and lower pairs given (2301 + 1023)
auto shuf = vcombine_f32 (
vget_high_f32 (pair),
vget_low_f32 (pair)
);
// add both partial sums: (2301 + 1032) + (0123 + 3210)
return vaddq_f32 (shuf, pair);
}
simd
dot (simd a, simd b)
{
return sum (a * b);
}
}
#endif

View File

@ -18,8 +18,8 @@
#ifndef CRUFT_UTIL_COORD_SIMD_SSE_HPP
#define CRUFT_UTIL_COORD_SIMD_SSE_HPP
#ifndef __SSE2__
#error "SSE2 is required"
#ifndef __SSE3__
#error "SSE3 is required"
#endif
#include <xmmintrin.h>
@ -58,8 +58,8 @@ namespace util::coord {
//---------------------------------------------------------------------
operator __m128& () { return data; }
operator const __m128& () const { return data; }
explicit operator __m128& () { return data; }
explicit operator const __m128& () const { return data; }
explicit operator bool () const;
@ -72,25 +72,75 @@ namespace util::coord {
///////////////////////////////////////////////////////////////////////////
simd operator+ (simd a, simd b) { return _mm_add_ps (a, b); }
simd operator- (simd a, simd b) { return _mm_sub_ps (a, b); }
simd operator/ (simd a, simd b) { return _mm_div_ps (a, b); }
simd operator* (simd a, simd b) { return _mm_mul_ps (a, b); }
simd operator+ (simd a, simd b) { return _mm_add_ps (a.data, b.data); }
simd operator- (simd a, simd b) { return _mm_sub_ps (a.data, b.data); }
simd operator/ (simd a, simd b) { return _mm_div_ps (a.data, b.data); }
simd operator* (simd a, simd b) { return _mm_mul_ps (a.data, b.data); }
//-------------------------------------------------------------------------
simd operator< (simd a, simd b) { return _mm_cmplt_ps (a, b); }
simd operator<= (simd a, simd b) { return _mm_cmple_ps (a, b); }
simd operator> (simd a, simd b) { return _mm_cmpgt_ps (a, b); }
simd operator>= (simd a, simd b) { return _mm_cmpge_ps (a, b); }
simd operator== (simd a, simd b) { return _mm_cmpeq_ps (a, b); }
// computes a*b + c
auto
fma (simd a, simd b, simd c)
{
#if defined(__FMA__)
return _mm_fmadd_ps (a.data, b.data, c.data);
#else
return a * b + c;
#endif
}
///////////////////////////////////////////////////////////////////////////
simd operator< (simd a, simd b) { return _mm_cmplt_ps (a.data, b.data); }
simd operator<= (simd a, simd b) { return _mm_cmple_ps (a.data, b.data); }
simd operator> (simd a, simd b) { return _mm_cmpgt_ps (a.data, b.data); }
simd operator>= (simd a, simd b) { return _mm_cmpge_ps (a.data, b.data); }
simd operator== (simd a, simd b) { return _mm_cmpeq_ps (a.data, b.data); }
//-------------------------------------------------------------------------
simd operator| (simd a, simd b) { return _mm_or_ps (a, b); }
simd operator& (simd a, simd b) { return _mm_and_ps (a, b); }
simd operator| (simd a, simd b) { return _mm_or_ps (a.data, b.data); }
simd operator|| (simd a, simd b) { return _mm_or_ps (a.data, b.data); }
simd operator& (simd a, simd b) { return _mm_and_ps (a.data, b.data); }
simd operator&& (simd a, simd b) { return _mm_and_ps (a.data, b.data); }
///////////////////////////////////////////////////////////////////////////
simd floor (simd val)
{
#if defined(__SSE4_1__)
return mm_floor_ps (val.data);
#else
// NOTE: assumes the rounding mode is 'nearest'
// cast to int and back to truncate
const auto truncated = _mm_cvtepi32_ps (_mm_cvtps_epi32 (val.data));
// if the truncated value is greater than the original value we got
// rounded up so we need to decrement to get the true value.
return truncated - ((truncated > val) & simd (1));
#endif
}
//---------------------------------------------------------------------------
simd ceil (simd val)
{
#if defined(__SSE4_1__)
return _mm_ceil_ps (val.data);
#else
// NOTE: assumes the rounding mode is 'nearest'
// truncate by casting to int and back
const auto truncated = _mm_cvtepi32_ps (_mm_cvtps_epi32 (val.data));
// if the truncated value is below the original value it got rounded
// down and needs to be incremented to get the true value.
return truncated + ((truncated < val) & simd (1));
#endif
}
///////////////////////////////////////////////////////////////////////////
simd
select (simd mask, simd a, simd b)
@ -99,8 +149,8 @@ namespace util::coord {
return _mm_blendv_ps (a, b, mask);
#else
return _mm_or_ps (
_mm_and_ps (mask, a),
_mm_andnot_ps (mask, b)
_mm_and_ps (mask.data, a.data),
_mm_andnot_ps (mask.data, b.data)
);
#endif
}
@ -110,58 +160,36 @@ namespace util::coord {
bool
all (simd val)
{
return _mm_movemask_ps (val) == 0b1111;
return _mm_movemask_ps (val.data) == 0b1111;
}
//-------------------------------------------------------------------------
auto
clamp (simd val, simd lo, simd hi)
bool
any (simd val)
{
auto lo_mask = val > lo;
auto hi_mask = val < hi;
auto res = (lo_mask & val)
return _mm_movemask_ps (val.data);
}
///////////////////////////////////////////////////////////////////////////
// use the same comparator in both because we're likely to use min
// and max near each other and the mask might be sharable this way.
simd min (simd a, simd b) { return select (a < b, a, b); }
simd max (simd a, simd b) { return select (a < b, b, a); }
simd min (simd a, simd b) { return _mm_min_ps (a.data, b.data); }
simd max (simd a, simd b) { return _mm_max_ps (a.data, b.data); }
simd
clamp (simd val, simd lo, simd hi)
{
return min (max (val, lo), hi);
}
///////////////////////////////////////////////////////////////////////////
#if defined (__SSE3__)
simd
sum (simd a)
{
auto part = _mm_hadd_ps (a, a);
auto part = _mm_hadd_ps (a.data, a.data);
return _mm_hadd_ps (part, part);
}
#else
auto
sum (simd vals)
{
// swap pairs of components
// vals: 3 2 1 0
// shuf: 2 3 0 1
auto shuf = _mm_shuffle_ps (vals, vals, _MM_SHUFFLE(2, 3, 0, 1));
// combine the pairs
auto sums = _mm_add_ps (vals, shuf);
// copy the lower components of sums up, then add with the original sums
// sums: 2+3 2+3 1+0 1+0
// shuf: xxx xxx 2+3 2+3
shuf = _mm_movehl_ps (shuf, sums);
sums = _mm_add_ss (sums, shuf);
// sums: xxx xxx 0123 1234
return _mm_cvtss_f32 (sums);
}
#endif
///////////////////////////////////////////////////////////////////////////
@ -171,25 +199,17 @@ namespace util::coord {
{
return _mm_dp_ps (a, b, 0xff);
}
#elif defined(__SSE3__)
#else
simd
dot (simd a, simd b)
{
return sum (a * b)
return sum (a * b);
}
#else
auto
dot (simd a, simd b)
{
auto mul = a * b;
return sum (mul);
}
#endif
///////////////////////////////////////////////////////////////////////////
simd sqrt (simd a) { return _mm_sqrt_ps (a); }
simd rsqrt (simd a) { return _mm_rsqrt_ps (a); }
simd sqrt (simd a) { return _mm_sqrt_ps (a.data); }
simd rsqrt (simd a) { return _mm_rsqrt_ps (a.data); }
///////////////////////////////////////////////////////////////////////////
@ -224,7 +244,7 @@ namespace util::coord {
auto b7fff = _mm_srli_epi32 (bffff, 1);
auto mask = _mm_castsi128_ps (b7fff);
return _mm_and_ps (mask, a);
return _mm_and_ps (mask, a.data);
}
@ -242,6 +262,18 @@ namespace util::coord {
{
return all (data);
}
std::ostream&
operator<< (std::ostream &os, simd val)
{
return os << "[ "
<< val[0] << ", "
<< val[1] << ", "
<< val[2] << ", "
<< val[3]
<< " ]";
}
}
#endif

View File

@ -5,30 +5,52 @@
int
main ()
{
using util::coord::simd;
util::TAP::logger tap;
std::clog << "rounding mode is: " << [] () {
switch (_MM_GET_ROUNDING_MODE ()) {
case _MM_ROUND_NEAREST: return "nearest";
case _MM_ROUND_DOWN: return "down";
case _MM_ROUND_UP: return "up";
case _MM_ROUND_TOWARD_ZERO: return "toward_zero";
}
return "unknown";
} () << '\n';
{
const util::coord::simd a (1,2,3,4);
const util::coord::simd b (4,1,3,2);
const float res = dot (a, b);
const simd a (1,2,3,4);
const simd b (4,1,3,2);
const float res = dot (a, b)[0];
tap.expect_eq (res, 4+2+9+8, "trivial dot product");
}
{
const util::coord::simd a (1, 2, 3, 4);
const util::coord::simd b (0, 3, 3, 9);
const simd a (1, 2, 3, 4);
const simd b (0, 3, 3, 9);
const auto lo = min (a, b);
const auto hi = max (a, b);
tap.expect_eq (lo, util::coord::simd {0,2,3,4}, "vector minimum");
tap.expect_eq (hi, util::coord::simd {1,3,3,9}, "vector maximum");
tap.expect_eq (lo, simd {0,2,3,4}, "vector minimum");
tap.expect_eq (hi, simd {1,3,3,9}, "vector maximum");
}
{
const util::coord::simd val { -INFINITY, INFINITY, 0, -9 };
tap.expect_eq (abs (val), util::coord::simd {INFINITY,INFINITY,0,9}, "absolute value");
const simd val { -INFINITY, INFINITY, 0, -9 };
tap.expect_eq (abs (val), simd {INFINITY,INFINITY,0,9}, "absolute value");
}
{
const simd test { -1.25f, 1.25f, 0.f, 1.f };
const auto lo = floor (test);
const auto hi = ceil (test);
tap.expect_eq (lo, simd { -2, 1, 0, 1 }, "floor");
tap.expect_eq (hi, simd { -1, 2, 0, 1 }, "ceil");
};
return tap.status ();
}