geom/ellipse: add sample_surface function
This commit is contained in:
parent
9affc28807
commit
06350b53cf
@ -11,7 +11,7 @@
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* Copyright 2015-2017 Danny Robson <danny@nerdcruft.net>
|
||||
* Copyright 2015-2018 Danny Robson <danny@nerdcruft.net>
|
||||
*/
|
||||
|
||||
#include "ellipse.hpp"
|
||||
@ -46,9 +46,6 @@ util::geom::intersects (A<S,T> a, B<S,T> b)
|
||||
}
|
||||
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
template <size_t DimensionV, typename ValueT>
|
||||
util::point<DimensionV,ValueT>
|
||||
@ -103,7 +100,6 @@ util::geom::bounds (K<S,T> k)
|
||||
}
|
||||
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
#define INSTANTIATE_S_T(S,T) \
|
||||
template bool util::geom::intersects (ellipse<S,T>, util::point<S,T>); \
|
||||
|
@ -11,19 +11,21 @@
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*
|
||||
* Copyright 2015 Danny Robson <danny@nerdcruft.net>
|
||||
* Copyright 2015-2018 Danny Robson <danny@nerdcruft.net>
|
||||
*/
|
||||
|
||||
#ifndef __UTIL_GEOM_ELLIPSE_HPP
|
||||
#define __UTIL_GEOM_ELLIPSE_HPP
|
||||
|
||||
#include <cstdlib>
|
||||
|
||||
#include "fwd.hpp"
|
||||
|
||||
#include "../point.hpp"
|
||||
#include "../vector.hpp"
|
||||
|
||||
#include <cstdlib>
|
||||
#include <random>
|
||||
|
||||
|
||||
namespace util::geom {
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
template <size_t S, typename ValueT>
|
||||
@ -38,6 +40,40 @@ namespace util::geom {
|
||||
util::vector<S,ValueT> up;
|
||||
};
|
||||
|
||||
using ellipse3f = ellipse<3,float>;
|
||||
|
||||
|
||||
/// returns the approximate surface area of the ellipse
|
||||
///
|
||||
/// the general form involves _substantially_ more expensive and
|
||||
/// complicated maths which is prohibitive right now.
|
||||
///
|
||||
/// the relative error should be at most 1.061%
|
||||
inline float
|
||||
area (ellipse3f self)
|
||||
{
|
||||
auto const semiprod = self.radius * self.radius.indices<1,2,0> ();
|
||||
auto const semipow = pow (semiprod, 1.6f);
|
||||
|
||||
return 4 * pi<float> * std::pow (sum (semipow) / 3, 1/1.6f);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
T
|
||||
area (ellipse<2,T> self)
|
||||
{
|
||||
return pi<T> * product (self.radius);
|
||||
}
|
||||
|
||||
|
||||
template <size_t S, typename T>
|
||||
T
|
||||
volume (ellipse<S,T> self)
|
||||
{
|
||||
return 4 / T{3} * pi<T> * product (self.radius);
|
||||
}
|
||||
|
||||
|
||||
template <size_t DimensionV, typename ValueT>
|
||||
point<DimensionV,ValueT>
|
||||
@ -57,7 +93,35 @@ namespace util::geom {
|
||||
ellipse<DimensionV,ValueT>
|
||||
);
|
||||
|
||||
using ellipse3f = ellipse<3,float>;
|
||||
|
||||
/// returns a point that is uniformly distributed about the ellipse
|
||||
/// surface.
|
||||
///
|
||||
/// NOTE: I don't have a strong proof that the below is in fact properly
|
||||
/// uniformly distributed, so if you need a strong guarantee for your work
|
||||
/// then it might not be the best option. But visual inspection appears to
|
||||
/// confirm there aren't obvious patterns.
|
||||
///
|
||||
/// the concept was taken from: https://math.stackexchange.com/a/2514182
|
||||
template <typename RandomT>
|
||||
util::point3f
|
||||
sample_surface (ellipse3f self, RandomT &generator)
|
||||
{
|
||||
const auto [a, b, c] = self.radius;
|
||||
const auto a2 = a * a;
|
||||
const auto b2 = b * b;
|
||||
const auto c2 = c * c;
|
||||
|
||||
// generate a direction vector from a normally distributed random variable
|
||||
auto const x = std::normal_distribution<float> (0, a2) (generator);
|
||||
auto const y = std::normal_distribution<float> (0, b2) (generator);
|
||||
auto const z = std::normal_distribution<float> (0, c2) (generator);
|
||||
|
||||
// find the distance to the surface along the direction vector
|
||||
auto const d = std::sqrt (x * x / a2 + y * y / b2 + z * z / c2);
|
||||
|
||||
return self.origin + util::vector3f {x,y,z} / d;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user