2016-12-21 20:20:56 +11:00
|
|
|
/*
|
2018-08-04 15:14:06 +10:00
|
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
2016-12-21 20:20:56 +11:00
|
|
|
*
|
|
|
|
* Copyright 2015-2016 Danny Robson <danny@nerdcruft.net>
|
|
|
|
*/
|
|
|
|
|
2017-11-22 16:49:37 +11:00
|
|
|
#include "bezier.hpp"
|
2016-12-21 20:20:56 +11:00
|
|
|
|
2017-11-22 16:49:37 +11:00
|
|
|
#include "polynomial.hpp"
|
|
|
|
#include "coord/iostream.hpp"
|
2016-12-21 20:20:56 +11:00
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2018-08-05 14:42:02 +10:00
|
|
|
namespace cruft {
|
2016-12-21 20:20:56 +11:00
|
|
|
template <>
|
|
|
|
point2f
|
|
|
|
bezier<2>::eval (float t) const
|
|
|
|
{
|
2020-09-24 08:03:41 +10:00
|
|
|
CHECK_INCLUSIVE(t, 0.f, 1.f);
|
2016-12-21 20:20:56 +11:00
|
|
|
|
|
|
|
const auto &P0 = m_coeffs[0];
|
|
|
|
const auto &P1 = m_coeffs[1];
|
|
|
|
const auto &P2 = m_coeffs[2];
|
|
|
|
|
|
|
|
return (
|
|
|
|
(1 - t) * (1 - t) * P0 +
|
|
|
|
2 * (1 - t) * t * P1 +
|
|
|
|
t * t * P2
|
2018-08-05 14:42:02 +10:00
|
|
|
).as<cruft::point> ();
|
2016-12-21 20:20:56 +11:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
2018-08-05 14:42:02 +10:00
|
|
|
namespace cruft {
|
2016-12-21 20:20:56 +11:00
|
|
|
template <>
|
2018-08-05 14:42:02 +10:00
|
|
|
std::array<cruft::vector2f,3>
|
2016-12-21 20:20:56 +11:00
|
|
|
bezier<2>::coeffs (void) const
|
|
|
|
{
|
|
|
|
auto &v = m_coeffs;
|
|
|
|
|
|
|
|
return {
|
|
|
|
+1.f * v[2] -2.f * v[1] + 1.f * v[0],
|
|
|
|
-2.f * v[2] +2.f * v[1],
|
|
|
|
+1.f * v[2]
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2018-08-05 14:42:02 +10:00
|
|
|
namespace cruft {
|
2016-12-21 20:20:56 +11:00
|
|
|
template <>
|
2018-08-05 14:42:02 +10:00
|
|
|
cruft::vector2f
|
2016-12-21 20:20:56 +11:00
|
|
|
bezier<2>::d1 (const float t) const noexcept
|
|
|
|
{
|
2020-09-24 08:03:41 +10:00
|
|
|
CHECK_INCLUSIVE (t, 0.f, 1.f);
|
2016-12-21 20:20:56 +11:00
|
|
|
|
|
|
|
const auto &P0 = m_coeffs[0];
|
|
|
|
const auto &P1 = m_coeffs[1];
|
|
|
|
const auto &P2 = m_coeffs[2];
|
|
|
|
|
|
|
|
return 2 * (1 - t) * (P1 - P0) +
|
|
|
|
2 * t * (P2 - P1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2018-08-05 14:42:02 +10:00
|
|
|
namespace cruft {
|
2016-12-21 20:20:56 +11:00
|
|
|
template <>
|
|
|
|
sdot_t
|
|
|
|
bezier<2>::sdot (point2f q) const noexcept
|
|
|
|
{
|
|
|
|
// setup inter-point vectors
|
|
|
|
const auto ab = m_points[1] - m_points[0];
|
|
|
|
const auto bc = m_points[2] - m_points[1];
|
|
|
|
const auto qa = m_points[0] - q;
|
|
|
|
const auto qb = m_points[1] - q;
|
|
|
|
const auto qc = m_points[2] - q;
|
|
|
|
|
|
|
|
// setup variables we want to minimise
|
|
|
|
float d = std::numeric_limits<float>::infinity ();
|
|
|
|
float t = std::numeric_limits<float>::quiet_NaN ();
|
|
|
|
|
|
|
|
// distance from A
|
|
|
|
const auto d_a = sign (cross (ab, qa)) * norm2 (qa);
|
|
|
|
if (abs (d_a) < abs (d)) {
|
|
|
|
d = d_a;
|
|
|
|
t = -dot (ab, qa) / norm2 (ab);
|
|
|
|
}
|
|
|
|
|
|
|
|
// distance from B
|
|
|
|
const auto d_b = sign (cross (bc, qc)) * norm2 (qc);
|
|
|
|
if (abs (d_b) < abs (d)) {
|
|
|
|
d = d_b;
|
|
|
|
t = -dot (bc, qb) / norm2 (bc);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Using procedure from: http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
|
|
|
//
|
|
|
|
// Parametric form: P(t) = (1-t)^2*P0 + 2t(1-t)P1 + t^2*P2
|
|
|
|
//
|
|
|
|
// Derivative: dP/dt = -2(1-t)P0 + 2(1-2t)P1 + 2tP2
|
|
|
|
// = 2(A+Bt), A=(P1-P0), B=(P2-P1-A)
|
|
|
|
//
|
|
|
|
const auto &p0 = m_points[0];
|
|
|
|
const auto &p1 = m_points[1];
|
|
|
|
const auto &p2 = m_points[2];
|
|
|
|
|
|
|
|
const auto A = p1 - p0;
|
|
|
|
const auto B = p2 - p1 - A;
|
|
|
|
|
|
|
|
// Make: dot (q, dP/dt) == 0
|
|
|
|
// dot (M - P(t), A + Bt) == 0
|
|
|
|
//
|
|
|
|
// Solve: at^3 + bt^2 + ct + d,
|
|
|
|
// a = B^2,
|
|
|
|
// b = 3A.B,
|
|
|
|
// c = 2A^2+M'.B,
|
|
|
|
// d = M'.A,
|
|
|
|
// M' = P0-M
|
|
|
|
|
|
|
|
const auto M = q;
|
|
|
|
const auto M_ = p0 - M;
|
|
|
|
|
|
|
|
const std::array<float,4>
|
|
|
|
poly = {
|
|
|
|
dot (B, B),
|
|
|
|
3 * dot (A, B),
|
|
|
|
2 * dot (A, A) + dot (M_, B),
|
|
|
|
dot (M_, A),
|
|
|
|
};
|
|
|
|
|
|
|
|
// test at polynomial minima
|
|
|
|
for (const auto r: polynomial::roots<3> (poly)) {
|
|
|
|
// bail if we have fewer roots than expected
|
|
|
|
if (std::isnan (r))
|
|
|
|
break;
|
|
|
|
|
|
|
|
// ignore if this root is off the curve
|
|
|
|
if (r < 0 || r > 1)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const auto qe = eval (r) - q;
|
|
|
|
|
|
|
|
const auto d_e = sign (cross (ab, qe)) * norm2 (qe);
|
|
|
|
if (abs (d_e) <= abs (d)) {
|
|
|
|
d = d_e;
|
|
|
|
t = r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculate the angles from the point to the endpoints if needed
|
|
|
|
d = sign (d) * std::sqrt (abs (d));
|
|
|
|
|
|
|
|
if (t >= 0 && t <= 1)
|
|
|
|
return { d, 0 };
|
|
|
|
if (t < 0) {
|
|
|
|
return { d, abs (dot (normalised (ab), normalised (qa))) };
|
|
|
|
} else
|
|
|
|
return { d, abs (dot (normalised (bc), normalised (qc))) };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
2018-08-05 14:42:02 +10:00
|
|
|
namespace cruft {
|
2016-12-21 20:20:56 +11:00
|
|
|
template <>
|
|
|
|
float
|
2018-08-05 14:42:02 +10:00
|
|
|
bezier<2>::distance (cruft::point2f q) const noexcept
|
2016-12-21 20:20:56 +11:00
|
|
|
{
|
|
|
|
return abs (sdot (q).distance);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|